Spaces:
Sleeping
Sleeping
Update src/app.py
#14
by
KhaqanNasir
- opened
- src/app.py +776 -499
src/app.py
CHANGED
@@ -1,251 +1,3 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# import torch
|
3 |
-
# import pandas as pd
|
4 |
-
# import numpy as np
|
5 |
-
# from pathlib import Path
|
6 |
-
# import sys
|
7 |
-
# import plotly.express as px
|
8 |
-
# import plotly.graph_objects as go
|
9 |
-
# from transformers import BertTokenizer
|
10 |
-
# import nltk
|
11 |
-
|
12 |
-
# # Download required NLTK data
|
13 |
-
# try:
|
14 |
-
# nltk.data.find('tokenizers/punkt')
|
15 |
-
# except LookupError:
|
16 |
-
# nltk.download('punkt')
|
17 |
-
# try:
|
18 |
-
# nltk.data.find('corpora/stopwords')
|
19 |
-
# except LookupError:
|
20 |
-
# nltk.download('stopwords')
|
21 |
-
# try:
|
22 |
-
# nltk.data.find('tokenizers/punkt_tab')
|
23 |
-
# except LookupError:
|
24 |
-
# nltk.download('punkt_tab')
|
25 |
-
# try:
|
26 |
-
# nltk.data.find('corpora/wordnet')
|
27 |
-
# except LookupError:
|
28 |
-
# nltk.download('wordnet')
|
29 |
-
|
30 |
-
# # Add project root to Python path
|
31 |
-
# project_root = Path(__file__).parent.parent
|
32 |
-
# sys.path.append(str(project_root))
|
33 |
-
|
34 |
-
# from src.models.hybrid_model import HybridFakeNewsDetector
|
35 |
-
# from src.config.config import *
|
36 |
-
# from src.data.preprocessor import TextPreprocessor
|
37 |
-
|
38 |
-
# # Page config is set in main app.py
|
39 |
-
|
40 |
-
# @st.cache_resource
|
41 |
-
# def load_model_and_tokenizer():
|
42 |
-
# """Load the model and tokenizer (cached)."""
|
43 |
-
# # Initialize model
|
44 |
-
# model = HybridFakeNewsDetector(
|
45 |
-
# bert_model_name=BERT_MODEL_NAME,
|
46 |
-
# lstm_hidden_size=LSTM_HIDDEN_SIZE,
|
47 |
-
# lstm_num_layers=LSTM_NUM_LAYERS,
|
48 |
-
# dropout_rate=DROPOUT_RATE
|
49 |
-
# )
|
50 |
-
|
51 |
-
# # Load trained weights
|
52 |
-
# state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
|
53 |
-
|
54 |
-
# # Filter out unexpected keys
|
55 |
-
# model_state_dict = model.state_dict()
|
56 |
-
# filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
|
57 |
-
|
58 |
-
# # Load the filtered state dict
|
59 |
-
# model.load_state_dict(filtered_state_dict, strict=False)
|
60 |
-
# model.eval()
|
61 |
-
|
62 |
-
# # Initialize tokenizer
|
63 |
-
# tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
|
64 |
-
|
65 |
-
# return model, tokenizer
|
66 |
-
|
67 |
-
# @st.cache_resource
|
68 |
-
# def get_preprocessor():
|
69 |
-
# """Get the text preprocessor (cached)."""
|
70 |
-
# return TextPreprocessor()
|
71 |
-
|
72 |
-
# def predict_news(text):
|
73 |
-
# """Predict if the given news is fake or real."""
|
74 |
-
# # Get model, tokenizer, and preprocessor from cache
|
75 |
-
# model, tokenizer = load_model_and_tokenizer()
|
76 |
-
# preprocessor = get_preprocessor()
|
77 |
-
|
78 |
-
# # Preprocess text
|
79 |
-
# processed_text = preprocessor.preprocess_text(text)
|
80 |
-
|
81 |
-
# # Tokenize
|
82 |
-
# encoding = tokenizer.encode_plus(
|
83 |
-
# processed_text,
|
84 |
-
# add_special_tokens=True,
|
85 |
-
# max_length=MAX_SEQUENCE_LENGTH,
|
86 |
-
# padding='max_length',
|
87 |
-
# truncation=True,
|
88 |
-
# return_attention_mask=True,
|
89 |
-
# return_tensors='pt'
|
90 |
-
# )
|
91 |
-
|
92 |
-
# # Get prediction
|
93 |
-
# with torch.no_grad():
|
94 |
-
# outputs = model(
|
95 |
-
# encoding['input_ids'],
|
96 |
-
# encoding['attention_mask']
|
97 |
-
# )
|
98 |
-
# probabilities = torch.softmax(outputs['logits'], dim=1)
|
99 |
-
# prediction = torch.argmax(outputs['logits'], dim=1)
|
100 |
-
# attention_weights = outputs['attention_weights']
|
101 |
-
|
102 |
-
# # Convert attention weights to numpy and get the first sequence
|
103 |
-
# attention_weights_np = attention_weights[0].cpu().numpy()
|
104 |
-
|
105 |
-
# return {
|
106 |
-
# 'prediction': prediction.item(),
|
107 |
-
# 'label': 'FAKE' if prediction.item() == 1 else 'REAL',
|
108 |
-
# 'confidence': torch.max(probabilities, dim=1)[0].item(),
|
109 |
-
# 'probabilities': {
|
110 |
-
# 'REAL': probabilities[0][0].item(),
|
111 |
-
# 'FAKE': probabilities[0][1].item()
|
112 |
-
# },
|
113 |
-
# 'attention_weights': attention_weights_np
|
114 |
-
# }
|
115 |
-
|
116 |
-
# def plot_confidence(probabilities):
|
117 |
-
# """Plot prediction confidence."""
|
118 |
-
# fig = go.Figure(data=[
|
119 |
-
# go.Bar(
|
120 |
-
# x=list(probabilities.keys()),
|
121 |
-
# y=list(probabilities.values()),
|
122 |
-
# text=[f'{p:.2%}' for p in probabilities.values()],
|
123 |
-
# textposition='auto',
|
124 |
-
# )
|
125 |
-
# ])
|
126 |
-
|
127 |
-
# fig.update_layout(
|
128 |
-
# title='Prediction Confidence',
|
129 |
-
# xaxis_title='Class',
|
130 |
-
# yaxis_title='Probability',
|
131 |
-
# yaxis_range=[0, 1]
|
132 |
-
# )
|
133 |
-
|
134 |
-
# return fig
|
135 |
-
|
136 |
-
# def plot_attention(text, attention_weights):
|
137 |
-
# """Plot attention weights."""
|
138 |
-
# tokens = text.split()
|
139 |
-
# attention_weights = attention_weights[:len(tokens)] # Truncate to match tokens
|
140 |
-
|
141 |
-
# # Ensure attention weights are in the correct format
|
142 |
-
# if isinstance(attention_weights, (list, np.ndarray)):
|
143 |
-
# attention_weights = np.array(attention_weights).flatten()
|
144 |
-
|
145 |
-
# # Format weights for display
|
146 |
-
# formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
|
147 |
-
|
148 |
-
# fig = go.Figure(data=[
|
149 |
-
# go.Bar(
|
150 |
-
# x=tokens,
|
151 |
-
# y=attention_weights,
|
152 |
-
# text=formatted_weights,
|
153 |
-
# textposition='auto',
|
154 |
-
# )
|
155 |
-
# ])
|
156 |
-
|
157 |
-
# fig.update_layout(
|
158 |
-
# title='Attention Weights',
|
159 |
-
# xaxis_title='Tokens',
|
160 |
-
# yaxis_title='Attention Weight',
|
161 |
-
# xaxis_tickangle=45
|
162 |
-
# )
|
163 |
-
|
164 |
-
# return fig
|
165 |
-
|
166 |
-
# def main():
|
167 |
-
# st.title("π° Fake News Detection System")
|
168 |
-
# st.write("""
|
169 |
-
# This application uses a hybrid deep learning model (BERT + BiLSTM + Attention)
|
170 |
-
# to detect fake news articles. Enter a news article below to analyze it.
|
171 |
-
# """)
|
172 |
-
|
173 |
-
# # Sidebar
|
174 |
-
# st.sidebar.title("About")
|
175 |
-
# st.sidebar.info("""
|
176 |
-
|
177 |
-
# The model combines:
|
178 |
-
# - BERT for contextual embeddings
|
179 |
-
# - BiLSTM for sequence modeling
|
180 |
-
# - Attention mechanism for interpretability
|
181 |
-
# """)
|
182 |
-
|
183 |
-
# # Main content
|
184 |
-
# st.header("News Analysis")
|
185 |
-
|
186 |
-
# # Text input
|
187 |
-
# news_text = st.text_area(
|
188 |
-
# "Enter the news article to analyze:",
|
189 |
-
# height=200,
|
190 |
-
# placeholder="Paste your news article here..."
|
191 |
-
# )
|
192 |
-
|
193 |
-
# if st.button("Analyze"):
|
194 |
-
# if news_text:
|
195 |
-
# with st.spinner("Analyzing the news article..."):
|
196 |
-
# # Get prediction
|
197 |
-
# result = predict_news(news_text)
|
198 |
-
|
199 |
-
# # Display result
|
200 |
-
# col1, col2 = st.columns(2)
|
201 |
-
|
202 |
-
# with col1:
|
203 |
-
# st.subheader("Prediction")
|
204 |
-
# if result['label'] == 'FAKE':
|
205 |
-
# st.error(f"π΄ This news is likely FAKE (Confidence: {result['confidence']:.2%})")
|
206 |
-
# else:
|
207 |
-
# st.success(f"π’ This news is likely REAL (Confidence: {result['confidence']:.2%})")
|
208 |
-
|
209 |
-
# with col2:
|
210 |
-
# st.subheader("Confidence Scores")
|
211 |
-
# st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
|
212 |
-
|
213 |
-
# # Show attention visualization
|
214 |
-
# st.subheader("Attention Analysis")
|
215 |
-
# st.write("""
|
216 |
-
# The attention weights show which parts of the text the model focused on
|
217 |
-
# while making its prediction. Higher weights indicate more important tokens.
|
218 |
-
# """)
|
219 |
-
# st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
220 |
-
|
221 |
-
# # Show model explanation
|
222 |
-
# st.subheader("Model Explanation")
|
223 |
-
# if result['label'] == 'FAKE':
|
224 |
-
# st.write("""
|
225 |
-
# The model identified this as fake news based on:
|
226 |
-
# - Linguistic patterns typical of fake news
|
227 |
-
# - Inconsistencies in the content
|
228 |
-
# - Attention weights on suspicious phrases
|
229 |
-
# """)
|
230 |
-
# else:
|
231 |
-
# st.write("""
|
232 |
-
# The model identified this as real news based on:
|
233 |
-
# - Credible language patterns
|
234 |
-
# - Consistent information
|
235 |
-
# - Attention weights on factual statements
|
236 |
-
# """)
|
237 |
-
# else:
|
238 |
-
# st.warning("Please enter a news article to analyze.")
|
239 |
-
|
240 |
-
# if __name__ == "__main__":
|
241 |
-
# main()
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
import streamlit as st
|
250 |
import torch
|
251 |
import pandas as pd
|
@@ -283,23 +35,29 @@ from src.models.hybrid_model import HybridFakeNewsDetector
|
|
283 |
from src.config.config import *
|
284 |
from src.data.preprocessor import TextPreprocessor
|
285 |
|
286 |
-
#
|
287 |
-
|
288 |
-
# Custom CSS for modern styling
|
289 |
st.markdown("""
|
290 |
<style>
|
291 |
/* Import Google Fonts */
|
292 |
-
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
293 |
|
294 |
/* Global Styles */
|
295 |
-
|
|
|
296 |
padding: 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
}
|
298 |
|
299 |
.stApp {
|
300 |
-
font-family: 'Inter', sans-serif;
|
301 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
302 |
min-height: 100vh;
|
|
|
303 |
}
|
304 |
|
305 |
/* Hide Streamlit elements */
|
@@ -307,227 +65,499 @@ st.markdown("""
|
|
307 |
footer {visibility: hidden;}
|
308 |
.stDeployButton {display: none;}
|
309 |
header {visibility: hidden;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
/* Hero Section */
|
312 |
.hero-container {
|
313 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
314 |
-
padding:
|
315 |
text-align: center;
|
316 |
color: white;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
margin-bottom: 2rem;
|
|
|
|
|
318 |
}
|
319 |
|
320 |
.hero-title {
|
321 |
-
font-
|
322 |
-
font-
|
323 |
-
|
|
|
324 |
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
325 |
-
background: linear-gradient(45deg, #fff, #e0e7ff);
|
326 |
-webkit-background-clip: text;
|
327 |
-webkit-text-fill-color: transparent;
|
328 |
background-clip: text;
|
|
|
329 |
}
|
330 |
|
331 |
.hero-subtitle {
|
332 |
-
font-size: 1.
|
333 |
font-weight: 400;
|
334 |
-
margin-bottom:
|
335 |
-
opacity: 0.
|
336 |
-
|
|
|
337 |
margin-left: auto;
|
338 |
margin-right: auto;
|
339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
}
|
341 |
|
342 |
/* Features Section */
|
343 |
-
.features-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
}
|
350 |
|
351 |
.features-grid {
|
352 |
display: grid;
|
353 |
-
grid-template-columns: repeat(auto-fit, minmax(
|
354 |
gap: 2rem;
|
355 |
-
|
|
|
356 |
}
|
357 |
|
358 |
.feature-card {
|
359 |
-
background:
|
360 |
-
padding:
|
361 |
-
border-radius:
|
362 |
text-align: center;
|
363 |
-
transition:
|
364 |
border: 1px solid #e2e8f0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
}
|
366 |
|
367 |
.feature-card:hover {
|
368 |
-
transform: translateY(-
|
369 |
-
box-shadow: 0
|
|
|
370 |
}
|
371 |
|
372 |
.feature-icon {
|
373 |
-
font-size:
|
374 |
-
margin-bottom:
|
375 |
display: block;
|
|
|
376 |
}
|
377 |
|
378 |
.feature-title {
|
379 |
-
font-
|
|
|
380 |
font-weight: 600;
|
381 |
-
color: #
|
382 |
-
margin-bottom:
|
383 |
}
|
384 |
|
385 |
.feature-description {
|
386 |
-
color: #
|
387 |
-
line-height: 1.
|
388 |
-
font-size:
|
389 |
}
|
390 |
|
391 |
/* Main Content Section */
|
392 |
.main-content {
|
393 |
background: white;
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
|
|
|
|
398 |
}
|
399 |
|
400 |
-
.
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
|
|
|
|
406 |
}
|
407 |
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
margin-bottom: 2rem;
|
413 |
-
max-width: 600px;
|
414 |
-
margin-left: auto;
|
415 |
-
margin-right: auto;
|
416 |
-
line-height: 1.6;
|
417 |
}
|
418 |
|
419 |
-
/* Input Section */
|
420 |
.stTextArea > div > div > textarea {
|
421 |
-
border-radius:
|
422 |
-
border: 2px solid #e2e8f0;
|
423 |
-
padding:
|
424 |
-
font-size: 1rem;
|
425 |
-
|
426 |
-
|
|
|
|
|
|
|
427 |
}
|
428 |
|
429 |
.stTextArea > div > div > textarea:focus {
|
430 |
-
border-color: #667eea;
|
431 |
-
box-shadow: 0 0 0
|
|
|
|
|
432 |
}
|
433 |
|
434 |
-
|
|
|
|
|
|
|
|
|
|
|
435 |
.stButton > button {
|
436 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
437 |
-
color: white;
|
438 |
-
border: none;
|
439 |
-
border-radius:
|
440 |
-
padding:
|
441 |
-
font-size: 1.
|
442 |
-
font-weight: 600;
|
443 |
-
font-family: '
|
444 |
-
transition: all 0.3s
|
445 |
-
box-shadow: 0
|
446 |
-
width: 100
|
|
|
|
|
447 |
}
|
448 |
|
449 |
.stButton > button:hover {
|
450 |
-
transform: translateY(-
|
451 |
-
box-shadow: 0
|
|
|
|
|
|
|
|
|
|
|
452 |
}
|
453 |
|
454 |
/* Results Section */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
.result-card {
|
456 |
-
background:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
padding: 2rem;
|
458 |
border-radius: 16px;
|
459 |
-
|
460 |
-
|
461 |
}
|
462 |
|
463 |
-
.
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
|
|
471 |
}
|
472 |
|
473 |
-
.
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
margin: 1rem 0;
|
|
|
|
|
481 |
}
|
482 |
|
483 |
/* Footer */
|
484 |
.footer {
|
485 |
-
background: linear-gradient(135deg, #
|
486 |
color: white;
|
487 |
-
padding:
|
488 |
text-align: center;
|
489 |
-
margin-top:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
490 |
}
|
491 |
|
492 |
.footer-content {
|
493 |
max-width: 1200px;
|
494 |
margin: 0 auto;
|
|
|
|
|
495 |
}
|
496 |
|
497 |
.footer-title {
|
498 |
-
font-
|
499 |
-
font-
|
|
|
500 |
margin-bottom: 1rem;
|
|
|
|
|
|
|
|
|
501 |
}
|
502 |
|
503 |
.footer-text {
|
504 |
-
color: #
|
505 |
margin-bottom: 2rem;
|
506 |
-
line-height: 1.
|
|
|
507 |
}
|
508 |
|
509 |
.footer-links {
|
510 |
display: flex;
|
511 |
justify-content: center;
|
512 |
-
gap:
|
513 |
-
margin-bottom:
|
|
|
514 |
}
|
515 |
|
516 |
.footer-link {
|
517 |
-
color: #
|
518 |
text-decoration: none;
|
519 |
-
transition:
|
|
|
|
|
|
|
520 |
}
|
521 |
|
522 |
.footer-link:hover {
|
523 |
color: white;
|
|
|
|
|
524 |
}
|
525 |
|
526 |
.footer-bottom {
|
527 |
-
border-top: 1px solid #
|
528 |
padding-top: 2rem;
|
529 |
-
color: #
|
530 |
-
font-size: 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
}
|
532 |
|
533 |
/* Responsive Design */
|
@@ -536,18 +566,46 @@ st.markdown("""
|
|
536 |
font-size: 3rem;
|
537 |
}
|
538 |
|
|
|
|
|
|
|
|
|
|
|
539 |
.features-grid {
|
540 |
grid-template-columns: 1fr;
|
541 |
}
|
542 |
|
543 |
.main-content {
|
|
|
544 |
padding: 2rem;
|
545 |
}
|
546 |
|
|
|
|
|
|
|
|
|
547 |
.footer-links {
|
548 |
flex-direction: column;
|
549 |
gap: 1rem;
|
550 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
551 |
}
|
552 |
</style>
|
553 |
""", unsafe_allow_html=True)
|
@@ -609,116 +667,213 @@ def predict_news(text):
|
|
609 |
}
|
610 |
|
611 |
def plot_confidence(probabilities):
|
612 |
-
"""Plot prediction confidence."""
|
|
|
|
|
613 |
fig = go.Figure(data=[
|
614 |
go.Bar(
|
615 |
x=list(probabilities.keys()),
|
616 |
y=list(probabilities.values()),
|
617 |
-
text=[f'{p:.
|
618 |
textposition='auto',
|
619 |
-
|
620 |
-
|
621 |
-
|
|
|
|
|
|
|
|
|
|
|
622 |
)
|
623 |
])
|
|
|
624 |
fig.update_layout(
|
625 |
title={
|
626 |
-
'text': 'Prediction Confidence',
|
627 |
'x': 0.5,
|
628 |
'xanchor': 'center',
|
629 |
-
'font': {'size':
|
630 |
},
|
631 |
-
|
632 |
-
|
633 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
634 |
template='plotly_white',
|
635 |
plot_bgcolor='rgba(0,0,0,0)',
|
636 |
paper_bgcolor='rgba(0,0,0,0)',
|
637 |
-
font={'family': 'Inter'}
|
|
|
|
|
638 |
)
|
639 |
return fig
|
640 |
|
641 |
def plot_attention(text, attention_weights):
|
642 |
-
"""Plot attention weights."""
|
643 |
-
tokens = text.split()
|
644 |
attention_weights = attention_weights[:len(tokens)]
|
|
|
645 |
if isinstance(attention_weights, (list, np.ndarray)):
|
646 |
attention_weights = np.array(attention_weights).flatten()
|
647 |
-
formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
|
648 |
|
649 |
-
#
|
650 |
-
|
651 |
-
|
|
|
|
|
|
|
|
|
|
|
652 |
|
653 |
fig = go.Figure(data=[
|
654 |
go.Bar(
|
655 |
x=tokens,
|
656 |
y=attention_weights,
|
657 |
-
text=
|
658 |
textposition='auto',
|
659 |
-
|
660 |
-
|
661 |
-
|
|
|
|
|
|
|
662 |
)
|
663 |
])
|
|
|
664 |
fig.update_layout(
|
665 |
title={
|
666 |
-
'text': 'Attention Weights Analysis',
|
667 |
'x': 0.5,
|
668 |
'xanchor': 'center',
|
669 |
-
'font': {'size':
|
670 |
},
|
671 |
-
|
672 |
-
|
673 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
674 |
template='plotly_white',
|
675 |
plot_bgcolor='rgba(0,0,0,0)',
|
676 |
paper_bgcolor='rgba(0,0,0,0)',
|
677 |
-
font={'family': 'Inter'}
|
|
|
|
|
678 |
)
|
679 |
return fig
|
680 |
|
681 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
682 |
# Hero Section
|
683 |
st.markdown("""
|
684 |
<div class="hero-container">
|
685 |
-
<
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
690 |
</div>
|
691 |
""", unsafe_allow_html=True)
|
692 |
|
693 |
# Features Section
|
694 |
st.markdown("""
|
695 |
-
<div class="features-
|
696 |
-
<
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
|
|
|
|
|
|
702 |
<div class="features-grid">
|
703 |
<div class="feature-card">
|
704 |
<span class="feature-icon">π€</span>
|
705 |
-
<h3 class="feature-title">BERT
|
706 |
<p class="feature-description">
|
707 |
-
Utilizes state-of-the-art BERT transformer for deep contextual understanding of news content
|
708 |
</p>
|
709 |
</div>
|
710 |
<div class="feature-card">
|
711 |
<span class="feature-icon">π§ </span>
|
712 |
-
<h3 class="feature-title">BiLSTM
|
713 |
<p class="feature-description">
|
714 |
-
|
715 |
</p>
|
716 |
</div>
|
717 |
<div class="feature-card">
|
718 |
<span class="feature-icon">ποΈ</span>
|
719 |
<h3 class="feature-title">Attention Mechanism</h3>
|
720 |
<p class="feature-description">
|
721 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
722 |
</p>
|
723 |
</div>
|
724 |
</div>
|
@@ -728,126 +883,248 @@ def main():
|
|
728 |
# Main Content Section
|
729 |
st.markdown("""
|
730 |
<div class="main-content">
|
731 |
-
<
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
|
|
|
|
|
|
|
|
737 |
""", unsafe_allow_html=True)
|
738 |
|
739 |
# Input Section
|
740 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
741 |
with col2:
|
742 |
-
|
743 |
-
"",
|
744 |
-
|
745 |
-
|
746 |
-
key="news_input"
|
747 |
)
|
748 |
-
|
749 |
-
analyze_button = st.button("π Analyze Article", key="analyze_button")
|
750 |
|
751 |
if analyze_button:
|
752 |
-
if news_text:
|
753 |
-
with st.spinner("π€
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
763 |
if result['label'] == 'FAKE':
|
764 |
-
st.markdown(
|
765 |
-
<div class="
|
766 |
-
|
767 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
768 |
</div>
|
769 |
-
|
770 |
else:
|
771 |
-
st.markdown(
|
772 |
-
<div class="
|
773 |
-
|
774 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
775 |
</div>
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
st.
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
|
|
|
|
|
|
824 |
else:
|
825 |
st.markdown('''
|
826 |
<div class="main-content">
|
827 |
-
<div
|
828 |
-
|
|
|
|
|
|
|
|
|
829 |
</div>
|
830 |
</div>
|
831 |
''', unsafe_allow_html=True)
|
832 |
|
|
|
|
|
833 |
# Footer
|
834 |
st.markdown("""
|
835 |
<div class="footer">
|
836 |
<div class="footer-content">
|
837 |
-
<h3 class="footer-title"
|
838 |
<p class="footer-text">
|
839 |
-
Empowering
|
840 |
-
Built with advanced deep learning models
|
|
|
841 |
</p>
|
842 |
<div class="footer-links">
|
843 |
-
<a href="#" class="footer-link"
|
844 |
-
<a href="#" class="footer-link"
|
845 |
-
<a href="#" class="footer-link"
|
846 |
-
<a href="#" class="footer-link"
|
|
|
|
|
847 |
</div>
|
848 |
<div class="footer-bottom">
|
849 |
-
<p
|
850 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
851 |
</div>
|
852 |
</div>
|
853 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
import pandas as pd
|
|
|
35 |
from src.config.config import *
|
36 |
from src.data.preprocessor import TextPreprocessor
|
37 |
|
38 |
+
# Custom CSS for modern, enhanced styling
|
|
|
|
|
39 |
st.markdown("""
|
40 |
<style>
|
41 |
/* Import Google Fonts */
|
42 |
+
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600;700;800;900&family=Inter:wght@300;400;500;600;700&display=swap');
|
43 |
|
44 |
/* Global Styles */
|
45 |
+
* {
|
46 |
+
margin: 0;
|
47 |
padding: 0;
|
48 |
+
box-sizing: border-box;
|
49 |
+
}
|
50 |
+
|
51 |
+
.main {
|
52 |
+
padding: 0 !important;
|
53 |
+
max-width: 100% !important;
|
54 |
}
|
55 |
|
56 |
.stApp {
|
57 |
+
font-family: 'Inter', 'Poppins', sans-serif;
|
58 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #6B73FF 100%);
|
59 |
min-height: 100vh;
|
60 |
+
color: #2d3748;
|
61 |
}
|
62 |
|
63 |
/* Hide Streamlit elements */
|
|
|
65 |
footer {visibility: hidden;}
|
66 |
.stDeployButton {display: none;}
|
67 |
header {visibility: hidden;}
|
68 |
+
.stApp > header {visibility: hidden;}
|
69 |
+
|
70 |
+
/* Header Navigation */
|
71 |
+
.header-nav {
|
72 |
+
background: rgba(255, 255, 255, 0.95);
|
73 |
+
backdrop-filter: blur(20px);
|
74 |
+
border-bottom: 1px solid rgba(255, 255, 255, 0.2);
|
75 |
+
padding: 1rem 2rem;
|
76 |
+
position: sticky;
|
77 |
+
top: 0;
|
78 |
+
z-index: 1000;
|
79 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
80 |
+
}
|
81 |
+
|
82 |
+
.nav-brand {
|
83 |
+
font-family: 'Poppins', sans-serif;
|
84 |
+
font-size: 1.8rem;
|
85 |
+
font-weight: 800;
|
86 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
87 |
+
-webkit-background-clip: text;
|
88 |
+
-webkit-text-fill-color: transparent;
|
89 |
+
background-clip: text;
|
90 |
+
display: inline-flex;
|
91 |
+
align-items: center;
|
92 |
+
gap: 0.5rem;
|
93 |
+
}
|
94 |
|
95 |
/* Hero Section */
|
96 |
.hero-container {
|
97 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #6B73FF 100%);
|
98 |
+
padding: 6rem 2rem;
|
99 |
text-align: center;
|
100 |
color: white;
|
101 |
+
position: relative;
|
102 |
+
overflow: hidden;
|
103 |
+
}
|
104 |
+
|
105 |
+
.hero-container::before {
|
106 |
+
content: '';
|
107 |
+
position: absolute;
|
108 |
+
top: 0;
|
109 |
+
left: 0;
|
110 |
+
right: 0;
|
111 |
+
bottom: 0;
|
112 |
+
background: url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1000 1000"><defs><radialGradient id="a" cx="50%" cy="50%"><stop offset="0%" stop-color="%23fff" stop-opacity="0.1"/><stop offset="100%" stop-color="%23fff" stop-opacity="0"/></radialGradient></defs><circle cx="200" cy="200" r="100" fill="url(%23a)"/><circle cx="800" cy="300" r="150" fill="url(%23a)"/><circle cx="400" cy="700" r="120" fill="url(%23a)"/></svg>');
|
113 |
+
pointer-events: none;
|
114 |
+
}
|
115 |
+
|
116 |
+
.hero-content {
|
117 |
+
position: relative;
|
118 |
+
z-index: 2;
|
119 |
+
max-width: 800px;
|
120 |
+
margin: 0 auto;
|
121 |
+
}
|
122 |
+
|
123 |
+
.hero-badge {
|
124 |
+
display: inline-flex;
|
125 |
+
align-items: center;
|
126 |
+
gap: 0.5rem;
|
127 |
+
background: rgba(255, 255, 255, 0.2);
|
128 |
+
padding: 0.5rem 1.5rem;
|
129 |
+
border-radius: 50px;
|
130 |
+
font-size: 0.9rem;
|
131 |
+
font-weight: 500;
|
132 |
margin-bottom: 2rem;
|
133 |
+
backdrop-filter: blur(10px);
|
134 |
+
border: 1px solid rgba(255, 255, 255, 0.3);
|
135 |
}
|
136 |
|
137 |
.hero-title {
|
138 |
+
font-family: 'Poppins', sans-serif;
|
139 |
+
font-size: 4.5rem;
|
140 |
+
font-weight: 900;
|
141 |
+
margin-bottom: 1.5rem;
|
142 |
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
143 |
+
background: linear-gradient(45deg, #fff, #e0e7ff, #fff);
|
144 |
-webkit-background-clip: text;
|
145 |
-webkit-text-fill-color: transparent;
|
146 |
background-clip: text;
|
147 |
+
line-height: 1.1;
|
148 |
}
|
149 |
|
150 |
.hero-subtitle {
|
151 |
+
font-size: 1.4rem;
|
152 |
font-weight: 400;
|
153 |
+
margin-bottom: 3rem;
|
154 |
+
opacity: 0.95;
|
155 |
+
line-height: 1.7;
|
156 |
+
max-width: 700px;
|
157 |
margin-left: auto;
|
158 |
margin-right: auto;
|
159 |
+
}
|
160 |
+
|
161 |
+
.hero-stats {
|
162 |
+
display: flex;
|
163 |
+
justify-content: center;
|
164 |
+
gap: 3rem;
|
165 |
+
margin-top: 2rem;
|
166 |
+
}
|
167 |
+
|
168 |
+
.stat-item {
|
169 |
+
text-align: center;
|
170 |
+
}
|
171 |
+
|
172 |
+
.stat-number {
|
173 |
+
font-size: 2.5rem;
|
174 |
+
font-weight: 700;
|
175 |
+
display: block;
|
176 |
+
}
|
177 |
+
|
178 |
+
.stat-label {
|
179 |
+
font-size: 0.9rem;
|
180 |
+
opacity: 0.8;
|
181 |
}
|
182 |
|
183 |
/* Features Section */
|
184 |
+
.features-section {
|
185 |
+
padding: 5rem 2rem;
|
186 |
+
background: #f8fafc;
|
187 |
+
position: relative;
|
188 |
+
}
|
189 |
+
|
190 |
+
.section-header {
|
191 |
+
text-align: center;
|
192 |
+
margin-bottom: 4rem;
|
193 |
+
}
|
194 |
+
|
195 |
+
.section-badge {
|
196 |
+
display: inline-flex;
|
197 |
+
align-items: center;
|
198 |
+
gap: 0.5rem;
|
199 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
200 |
+
color: white;
|
201 |
+
padding: 0.5rem 1.5rem;
|
202 |
+
border-radius: 50px;
|
203 |
+
font-size: 0.85rem;
|
204 |
+
font-weight: 600;
|
205 |
+
margin-bottom: 1rem;
|
206 |
+
text-transform: uppercase;
|
207 |
+
letter-spacing: 0.5px;
|
208 |
+
}
|
209 |
+
|
210 |
+
.section-title {
|
211 |
+
font-family: 'Poppins', sans-serif;
|
212 |
+
font-size: 3rem;
|
213 |
+
font-weight: 700;
|
214 |
+
color: #1a202c;
|
215 |
+
margin-bottom: 1rem;
|
216 |
+
line-height: 1.2;
|
217 |
+
}
|
218 |
+
|
219 |
+
.section-description {
|
220 |
+
font-size: 1.2rem;
|
221 |
+
color: #4a5568;
|
222 |
+
max-width: 600px;
|
223 |
+
margin: 0 auto;
|
224 |
+
line-height: 1.6;
|
225 |
}
|
226 |
|
227 |
.features-grid {
|
228 |
display: grid;
|
229 |
+
grid-template-columns: repeat(auto-fit, minmax(350px, 1fr));
|
230 |
gap: 2rem;
|
231 |
+
max-width: 1200px;
|
232 |
+
margin: 0 auto;
|
233 |
}
|
234 |
|
235 |
.feature-card {
|
236 |
+
background: white;
|
237 |
+
padding: 2.5rem;
|
238 |
+
border-radius: 20px;
|
239 |
text-align: center;
|
240 |
+
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
|
241 |
border: 1px solid #e2e8f0;
|
242 |
+
position: relative;
|
243 |
+
overflow: hidden;
|
244 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
|
245 |
+
}
|
246 |
+
|
247 |
+
.feature-card::before {
|
248 |
+
content: '';
|
249 |
+
position: absolute;
|
250 |
+
top: 0;
|
251 |
+
left: 0;
|
252 |
+
right: 0;
|
253 |
+
height: 4px;
|
254 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
255 |
}
|
256 |
|
257 |
.feature-card:hover {
|
258 |
+
transform: translateY(-12px);
|
259 |
+
box-shadow: 0 25px 50px rgba(0, 0, 0, 0.15);
|
260 |
+
border-color: #667eea;
|
261 |
}
|
262 |
|
263 |
.feature-icon {
|
264 |
+
font-size: 3.5rem;
|
265 |
+
margin-bottom: 1.5rem;
|
266 |
display: block;
|
267 |
+
filter: drop-shadow(0 4px 8px rgba(0, 0, 0, 0.1));
|
268 |
}
|
269 |
|
270 |
.feature-title {
|
271 |
+
font-family: 'Poppins', sans-serif;
|
272 |
+
font-size: 1.4rem;
|
273 |
font-weight: 600;
|
274 |
+
color: #1a202c;
|
275 |
+
margin-bottom: 1rem;
|
276 |
}
|
277 |
|
278 |
.feature-description {
|
279 |
+
color: #4a5568;
|
280 |
+
line-height: 1.6;
|
281 |
+
font-size: 1rem;
|
282 |
}
|
283 |
|
284 |
/* Main Content Section */
|
285 |
.main-content {
|
286 |
background: white;
|
287 |
+
margin: 3rem 2rem;
|
288 |
+
padding: 4rem;
|
289 |
+
border-radius: 24px;
|
290 |
+
box-shadow: 0 20px 60px rgba(0, 0, 0, 0.1);
|
291 |
+
position: relative;
|
292 |
+
overflow: hidden;
|
293 |
}
|
294 |
|
295 |
+
.main-content::before {
|
296 |
+
content: '';
|
297 |
+
position: absolute;
|
298 |
+
top: 0;
|
299 |
+
left: 0;
|
300 |
+
right: 0;
|
301 |
+
height: 6px;
|
302 |
+
background: linear-gradient(135deg, #667eea, #764ba2, #6B73FF);
|
303 |
}
|
304 |
|
305 |
+
/* Input Section Styling */
|
306 |
+
.input-container {
|
307 |
+
max-width: 800px;
|
308 |
+
margin: 0 auto;
|
|
|
|
|
|
|
|
|
|
|
309 |
}
|
310 |
|
|
|
311 |
.stTextArea > div > div > textarea {
|
312 |
+
border-radius: 16px !important;
|
313 |
+
border: 2px solid #e2e8f0 !important;
|
314 |
+
padding: 1.5rem !important;
|
315 |
+
font-size: 1.1rem !important;
|
316 |
+
font-family: 'Inter', sans-serif !important;
|
317 |
+
transition: all 0.3s ease !important;
|
318 |
+
background: #fafafa !important;
|
319 |
+
resize: vertical !important;
|
320 |
+
min-height: 200px !important;
|
321 |
}
|
322 |
|
323 |
.stTextArea > div > div > textarea:focus {
|
324 |
+
border-color: #667eea !important;
|
325 |
+
box-shadow: 0 0 0 4px rgba(102, 126, 234, 0.1) !important;
|
326 |
+
background: white !important;
|
327 |
+
outline: none !important;
|
328 |
}
|
329 |
|
330 |
+
.stTextArea > div > div > textarea::placeholder {
|
331 |
+
color: #a0aec0 !important;
|
332 |
+
font-style: italic !important;
|
333 |
+
}
|
334 |
+
|
335 |
+
/* Enhanced Button Styling */
|
336 |
.stButton > button {
|
337 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
338 |
+
color: white !important;
|
339 |
+
border: none !important;
|
340 |
+
border-radius: 16px !important;
|
341 |
+
padding: 1rem 3rem !important;
|
342 |
+
font-size: 1.2rem !important;
|
343 |
+
font-weight: 600 !important;
|
344 |
+
font-family: 'Poppins', sans-serif !important;
|
345 |
+
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
|
346 |
+
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4) !important;
|
347 |
+
width: 100% !important;
|
348 |
+
position: relative !important;
|
349 |
+
overflow: hidden !important;
|
350 |
}
|
351 |
|
352 |
.stButton > button:hover {
|
353 |
+
transform: translateY(-3px) !important;
|
354 |
+
box-shadow: 0 15px 35px rgba(102, 126, 234, 0.6) !important;
|
355 |
+
background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%) !important;
|
356 |
+
}
|
357 |
+
|
358 |
+
.stButton > button:active {
|
359 |
+
transform: translateY(-1px) !important;
|
360 |
}
|
361 |
|
362 |
/* Results Section */
|
363 |
+
.results-container {
|
364 |
+
margin-top: 3rem;
|
365 |
+
padding: 2rem;
|
366 |
+
background: linear-gradient(135deg, #f7fafc 0%, #edf2f7 100%);
|
367 |
+
border-radius: 20px;
|
368 |
+
border: 1px solid #e2e8f0;
|
369 |
+
}
|
370 |
+
|
371 |
.result-card {
|
372 |
+
background: white;
|
373 |
+
padding: 2.5rem;
|
374 |
+
border-radius: 20px;
|
375 |
+
margin: 1.5rem 0;
|
376 |
+
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.08);
|
377 |
+
border-left: 6px solid transparent;
|
378 |
+
transition: all 0.3s ease;
|
379 |
+
}
|
380 |
+
|
381 |
+
.result-card:hover {
|
382 |
+
transform: translateY(-2px);
|
383 |
+
box-shadow: 0 12px 35px rgba(0, 0, 0, 0.12);
|
384 |
+
}
|
385 |
+
|
386 |
+
.prediction-badge {
|
387 |
+
display: inline-flex;
|
388 |
+
align-items: center;
|
389 |
+
gap: 0.75rem;
|
390 |
+
padding: 1rem 2rem;
|
391 |
+
border-radius: 50px;
|
392 |
+
font-weight: 700;
|
393 |
+
font-size: 1.1rem;
|
394 |
+
margin-bottom: 1rem;
|
395 |
+
}
|
396 |
+
|
397 |
+
.fake-news {
|
398 |
+
background: linear-gradient(135deg, #fed7d7 0%, #feb2b2 100%);
|
399 |
+
color: #c53030;
|
400 |
+
border-left-color: #e53e3e;
|
401 |
+
}
|
402 |
+
|
403 |
+
.real-news {
|
404 |
+
background: linear-gradient(135deg, #c6f6d5 0%, #9ae6b4 100%);
|
405 |
+
color: #2f855a;
|
406 |
+
border-left-color: #38a169;
|
407 |
+
}
|
408 |
+
|
409 |
+
.confidence-score {
|
410 |
+
font-size: 1.4rem;
|
411 |
+
font-weight: 700;
|
412 |
+
margin-left: auto;
|
413 |
+
}
|
414 |
+
|
415 |
+
/* Analysis Cards */
|
416 |
+
.analysis-grid {
|
417 |
+
display: grid;
|
418 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
419 |
+
gap: 2rem;
|
420 |
+
margin: 2rem 0;
|
421 |
+
}
|
422 |
+
|
423 |
+
.analysis-card {
|
424 |
+
background: white;
|
425 |
padding: 2rem;
|
426 |
border-radius: 16px;
|
427 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.08);
|
428 |
+
border-top: 4px solid #667eea;
|
429 |
}
|
430 |
|
431 |
+
.analysis-title {
|
432 |
+
font-family: 'Poppins', sans-serif;
|
433 |
+
font-size: 1.3rem;
|
434 |
+
font-weight: 600;
|
435 |
+
color: #1a202c;
|
436 |
+
margin-bottom: 1rem;
|
437 |
+
display: flex;
|
438 |
+
align-items: center;
|
439 |
+
gap: 0.5rem;
|
440 |
}
|
441 |
|
442 |
+
.analysis-content {
|
443 |
+
color: #4a5568;
|
444 |
+
line-height: 1.6;
|
445 |
+
}
|
446 |
+
|
447 |
+
.analysis-list {
|
448 |
+
list-style: none;
|
449 |
+
padding: 0;
|
450 |
+
}
|
451 |
+
|
452 |
+
.analysis-list li {
|
453 |
+
padding: 0.5rem 0;
|
454 |
+
padding-left: 1.5rem;
|
455 |
+
position: relative;
|
456 |
+
border-bottom: 1px solid #f1f5f9;
|
457 |
+
}
|
458 |
+
|
459 |
+
.analysis-list li:before {
|
460 |
+
content: 'β';
|
461 |
+
position: absolute;
|
462 |
+
left: 0;
|
463 |
+
color: #667eea;
|
464 |
+
font-weight: bold;
|
465 |
+
}
|
466 |
+
|
467 |
+
.analysis-list li:last-child {
|
468 |
+
border-bottom: none;
|
469 |
+
}
|
470 |
+
|
471 |
+
/* Chart Containers */
|
472 |
+
.chart-container {
|
473 |
+
background: white;
|
474 |
+
padding: 2rem;
|
475 |
+
border-radius: 16px;
|
476 |
margin: 1rem 0;
|
477 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.05);
|
478 |
+
border: 1px solid #f1f5f9;
|
479 |
}
|
480 |
|
481 |
/* Footer */
|
482 |
.footer {
|
483 |
+
background: linear-gradient(135deg, #1a202c 0%, #2d3748 100%);
|
484 |
color: white;
|
485 |
+
padding: 4rem 2rem 2rem;
|
486 |
text-align: center;
|
487 |
+
margin-top: 5rem;
|
488 |
+
position: relative;
|
489 |
+
overflow: hidden;
|
490 |
+
}
|
491 |
+
|
492 |
+
.footer::before {
|
493 |
+
content: '';
|
494 |
+
position: absolute;
|
495 |
+
top: 0;
|
496 |
+
left: 0;
|
497 |
+
right: 0;
|
498 |
+
height: 6px;
|
499 |
+
background: linear-gradient(135deg, #667eea, #764ba2, #6B73FF);
|
500 |
}
|
501 |
|
502 |
.footer-content {
|
503 |
max-width: 1200px;
|
504 |
margin: 0 auto;
|
505 |
+
position: relative;
|
506 |
+
z-index: 2;
|
507 |
}
|
508 |
|
509 |
.footer-title {
|
510 |
+
font-family: 'Poppins', sans-serif;
|
511 |
+
font-size: 2rem;
|
512 |
+
font-weight: 700;
|
513 |
margin-bottom: 1rem;
|
514 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
515 |
+
-webkit-background-clip: text;
|
516 |
+
-webkit-text-fill-color: transparent;
|
517 |
+
background-clip: text;
|
518 |
}
|
519 |
|
520 |
.footer-text {
|
521 |
+
color: #cbd5e0;
|
522 |
margin-bottom: 2rem;
|
523 |
+
line-height: 1.7;
|
524 |
+
font-size: 1.1rem;
|
525 |
}
|
526 |
|
527 |
.footer-links {
|
528 |
display: flex;
|
529 |
justify-content: center;
|
530 |
+
gap: 3rem;
|
531 |
+
margin-bottom: 3rem;
|
532 |
+
flex-wrap: wrap;
|
533 |
}
|
534 |
|
535 |
.footer-link {
|
536 |
+
color: #cbd5e0;
|
537 |
text-decoration: none;
|
538 |
+
transition: all 0.3s ease;
|
539 |
+
font-weight: 500;
|
540 |
+
padding: 0.5rem 1rem;
|
541 |
+
border-radius: 8px;
|
542 |
}
|
543 |
|
544 |
.footer-link:hover {
|
545 |
color: white;
|
546 |
+
background: rgba(102, 126, 234, 0.2);
|
547 |
+
transform: translateY(-2px);
|
548 |
}
|
549 |
|
550 |
.footer-bottom {
|
551 |
+
border-top: 1px solid #4a5568;
|
552 |
padding-top: 2rem;
|
553 |
+
color: #a0aec0;
|
554 |
+
font-size: 0.95rem;
|
555 |
+
line-height: 1.6;
|
556 |
+
}
|
557 |
+
|
558 |
+
/* Loading Spinner Custom */
|
559 |
+
.stSpinner > div {
|
560 |
+
border-color: #667eea transparent #667eea transparent !important;
|
561 |
}
|
562 |
|
563 |
/* Responsive Design */
|
|
|
566 |
font-size: 3rem;
|
567 |
}
|
568 |
|
569 |
+
.hero-stats {
|
570 |
+
flex-direction: column;
|
571 |
+
gap: 1.5rem;
|
572 |
+
}
|
573 |
+
|
574 |
.features-grid {
|
575 |
grid-template-columns: 1fr;
|
576 |
}
|
577 |
|
578 |
.main-content {
|
579 |
+
margin: 2rem 1rem;
|
580 |
padding: 2rem;
|
581 |
}
|
582 |
|
583 |
+
.section-title {
|
584 |
+
font-size: 2.2rem;
|
585 |
+
}
|
586 |
+
|
587 |
.footer-links {
|
588 |
flex-direction: column;
|
589 |
gap: 1rem;
|
590 |
}
|
591 |
+
|
592 |
+
.analysis-grid {
|
593 |
+
grid-template-columns: 1fr;
|
594 |
+
}
|
595 |
+
}
|
596 |
+
|
597 |
+
@media (max-width: 480px) {
|
598 |
+
.hero-title {
|
599 |
+
font-size: 2.5rem;
|
600 |
+
}
|
601 |
+
|
602 |
+
.section-title {
|
603 |
+
font-size: 2rem;
|
604 |
+
}
|
605 |
+
|
606 |
+
.feature-card {
|
607 |
+
padding: 2rem 1.5rem;
|
608 |
+
}
|
609 |
}
|
610 |
</style>
|
611 |
""", unsafe_allow_html=True)
|
|
|
667 |
}
|
668 |
|
669 |
def plot_confidence(probabilities):
|
670 |
+
"""Plot prediction confidence with enhanced styling."""
|
671 |
+
colors = ['#22c55e', '#ef4444']
|
672 |
+
|
673 |
fig = go.Figure(data=[
|
674 |
go.Bar(
|
675 |
x=list(probabilities.keys()),
|
676 |
y=list(probabilities.values()),
|
677 |
+
text=[f'{p:.1%}' for p in probabilities.values()],
|
678 |
textposition='auto',
|
679 |
+
textfont=dict(size=16, family="Poppins", color="white"),
|
680 |
+
marker=dict(
|
681 |
+
color=colors,
|
682 |
+
line=dict(color='rgba(255,255,255,0.3)', width=2),
|
683 |
+
pattern_shape="",
|
684 |
+
),
|
685 |
+
hovertemplate='<b>%{x}</b><br>Confidence: %{y:.1%}<extra></extra>',
|
686 |
+
width=[0.6, 0.6]
|
687 |
)
|
688 |
])
|
689 |
+
|
690 |
fig.update_layout(
|
691 |
title={
|
692 |
+
'text': 'π Prediction Confidence',
|
693 |
'x': 0.5,
|
694 |
'xanchor': 'center',
|
695 |
+
'font': {'size': 24, 'family': 'Poppins', 'color': '#1a202c'}
|
696 |
},
|
697 |
+
xaxis=dict(
|
698 |
+
title='Classification',
|
699 |
+
titlefont=dict(size=16, family='Inter', color='#4a5568'),
|
700 |
+
tickfont=dict(size=14, family='Inter', color='#4a5568'),
|
701 |
+
showgrid=False,
|
702 |
+
),
|
703 |
+
yaxis=dict(
|
704 |
+
title='Probability',
|
705 |
+
titlefont=dict(size=16, family='Inter', color='#4a5568'),
|
706 |
+
tickfont=dict(size=14, family='Inter', color='#4a5568'),
|
707 |
+
range=[0, 1],
|
708 |
+
tickformat='.0%',
|
709 |
+
showgrid=True,
|
710 |
+
gridcolor='rgba(0,0,0,0.05)',
|
711 |
+
),
|
712 |
template='plotly_white',
|
713 |
plot_bgcolor='rgba(0,0,0,0)',
|
714 |
paper_bgcolor='rgba(0,0,0,0)',
|
715 |
+
font={'family': 'Inter'},
|
716 |
+
margin=dict(l=50, r=50, t=80, b=50),
|
717 |
+
height=400
|
718 |
)
|
719 |
return fig
|
720 |
|
721 |
def plot_attention(text, attention_weights):
|
722 |
+
"""Plot attention weights with enhanced styling."""
|
723 |
+
tokens = text.split()[:20] # Limit to first 20 tokens for better visualization
|
724 |
attention_weights = attention_weights[:len(tokens)]
|
725 |
+
|
726 |
if isinstance(attention_weights, (list, np.ndarray)):
|
727 |
attention_weights = np.array(attention_weights).flatten()
|
|
|
728 |
|
729 |
+
# Normalize attention weights
|
730 |
+
if len(attention_weights) > 0 and max(attention_weights) > 0:
|
731 |
+
normalized_weights = attention_weights / max(attention_weights)
|
732 |
+
else:
|
733 |
+
normalized_weights = attention_weights
|
734 |
+
|
735 |
+
# Create gradient colors
|
736 |
+
colors = [f'rgba(102, 126, 234, {0.3 + 0.7 * float(w)})' for w in normalized_weights]
|
737 |
|
738 |
fig = go.Figure(data=[
|
739 |
go.Bar(
|
740 |
x=tokens,
|
741 |
y=attention_weights,
|
742 |
+
text=[f'{float(w):.3f}' for w in attention_weights],
|
743 |
textposition='auto',
|
744 |
+
textfont=dict(size=12, family="Inter", color="white"),
|
745 |
+
marker=dict(
|
746 |
+
color=colors,
|
747 |
+
line=dict(color='rgba(102, 126, 234, 0.8)', width=1),
|
748 |
+
),
|
749 |
+
hovertemplate='<b>%{x}</b><br>Attention: %{y:.3f}<extra></extra>',
|
750 |
)
|
751 |
])
|
752 |
+
|
753 |
fig.update_layout(
|
754 |
title={
|
755 |
+
'text': 'π― Attention Weights Analysis',
|
756 |
'x': 0.5,
|
757 |
'xanchor': 'center',
|
758 |
+
'font': {'size': 24, 'family': 'Poppins', 'color': '#1a202c'}
|
759 |
},
|
760 |
+
xaxis=dict(
|
761 |
+
title='Words/Tokens',
|
762 |
+
titlefont=dict(size=16, family='Inter', color='#4a5568'),
|
763 |
+
tickfont=dict(size=12, family='Inter', color='#4a5568'),
|
764 |
+
tickangle=45,
|
765 |
+
showgrid=False,
|
766 |
+
),
|
767 |
+
yaxis=dict(
|
768 |
+
title='Attention Score',
|
769 |
+
titlefont=dict(size=16, family='Inter', color='#4a5568'),
|
770 |
+
tickfont=dict(size=14, family='Inter', color='#4a5568'),
|
771 |
+
showgrid=True,
|
772 |
+
gridcolor='rgba(0,0,0,0.05)',
|
773 |
+
),
|
774 |
template='plotly_white',
|
775 |
plot_bgcolor='rgba(0,0,0,0)',
|
776 |
paper_bgcolor='rgba(0,0,0,0)',
|
777 |
+
font={'family': 'Inter'},
|
778 |
+
margin=dict(l=50, r=50, t=80, b=100),
|
779 |
+
height=450
|
780 |
)
|
781 |
return fig
|
782 |
|
783 |
def main():
|
784 |
+
# Header Navigation
|
785 |
+
st.markdown("""
|
786 |
+
<div class="header-nav">
|
787 |
+
<div class="nav-brand">
|
788 |
+
π‘οΈ TruthCheck
|
789 |
+
</div>
|
790 |
+
</div>
|
791 |
+
""", unsafe_allow_html=True)
|
792 |
+
|
793 |
# Hero Section
|
794 |
st.markdown("""
|
795 |
<div class="hero-container">
|
796 |
+
<div class="hero-content">
|
797 |
+
<div class="hero-badge">
|
798 |
+
β‘ Powered by Advanced AI Technology
|
799 |
+
</div>
|
800 |
+
<h1 class="hero-title">π‘οΈ TruthCheck</h1>
|
801 |
+
<h2 style="font-size: 1.8rem; font-weight: 600; margin-bottom: 1rem; opacity: 0.9;">Advanced Fake News Detector</h2>
|
802 |
+
<p class="hero-subtitle">
|
803 |
+
π Leverage cutting-edge deep learning technology to instantly analyze and verify news articles.
|
804 |
+
Our hybrid BERT-BiLSTM model delivers precise, trustworthy results with detailed explanations.
|
805 |
+
</p>
|
806 |
+
<div class="hero-stats">
|
807 |
+
<div class="stat-item">
|
808 |
+
<span class="stat-number">95%+</span>
|
809 |
+
<span class="stat-label">Accuracy</span>
|
810 |
+
</div>
|
811 |
+
<div class="stat-item">
|
812 |
+
<span class="stat-number"><3s</span>
|
813 |
+
<span class="stat-label">Analysis Time</span>
|
814 |
+
</div>
|
815 |
+
<div class="stat-item">
|
816 |
+
<span class="stat-number">24/7</span>
|
817 |
+
<span class="stat-label">Available</span>
|
818 |
+
</div>
|
819 |
+
</div>
|
820 |
+
</div>
|
821 |
</div>
|
822 |
""", unsafe_allow_html=True)
|
823 |
|
824 |
# Features Section
|
825 |
st.markdown("""
|
826 |
+
<div class="features-section">
|
827 |
+
<div class="section-header">
|
828 |
+
<div class="section-badge">
|
829 |
+
π Advanced Features
|
830 |
+
</div>
|
831 |
+
<h2 class="section-title">Why Choose TruthCheck?</h2>
|
832 |
+
<p class="section-description">
|
833 |
+
Our state-of-the-art AI combines multiple advanced technologies to deliver unparalleled accuracy in fake news detection
|
834 |
+
</p>
|
835 |
+
</div>
|
836 |
<div class="features-grid">
|
837 |
<div class="feature-card">
|
838 |
<span class="feature-icon">π€</span>
|
839 |
+
<h3 class="feature-title">BERT Transformer</h3>
|
840 |
<p class="feature-description">
|
841 |
+
Utilizes state-of-the-art BERT transformer architecture for deep contextual understanding and semantic analysis of news content with unprecedented accuracy.
|
842 |
</p>
|
843 |
</div>
|
844 |
<div class="feature-card">
|
845 |
<span class="feature-icon">π§ </span>
|
846 |
+
<h3 class="feature-title">BiLSTM Networks</h3>
|
847 |
<p class="feature-description">
|
848 |
+
Advanced bidirectional LSTM networks capture sequential patterns, temporal dependencies, and linguistic structures in news articles for comprehensive analysis.
|
849 |
</p>
|
850 |
</div>
|
851 |
<div class="feature-card">
|
852 |
<span class="feature-icon">ποΈ</span>
|
853 |
<h3 class="feature-title">Attention Mechanism</h3>
|
854 |
<p class="feature-description">
|
855 |
+
Sophisticated attention layers provide transparent insights into model decision-making, highlighting key phrases and suspicious content patterns.
|
856 |
+
</p>
|
857 |
+
</div>
|
858 |
+
<div class="feature-card">
|
859 |
+
<span class="feature-icon">β‘</span>
|
860 |
+
<h3 class="feature-title">Real-time Processing</h3>
|
861 |
+
<p class="feature-description">
|
862 |
+
Lightning-fast analysis delivers results in seconds, enabling immediate verification of news content without compromising accuracy or detail.
|
863 |
+
</p>
|
864 |
+
</div>
|
865 |
+
<div class="feature-card">
|
866 |
+
<span class="feature-icon">π</span>
|
867 |
+
<h3 class="feature-title">Confidence Scoring</h3>
|
868 |
+
<p class="feature-description">
|
869 |
+
Detailed confidence metrics and probability distributions provide clear insights into prediction reliability and uncertainty levels.
|
870 |
+
</p>
|
871 |
+
</div>
|
872 |
+
<div class="feature-card">
|
873 |
+
<span class="feature-icon">π</span>
|
874 |
+
<h3 class="feature-title">Privacy Protected</h3>
|
875 |
+
<p class="feature-description">
|
876 |
+
Your data is processed securely with no storage or tracking. Complete privacy protection ensures your news analysis remains confidential.
|
877 |
</p>
|
878 |
</div>
|
879 |
</div>
|
|
|
883 |
# Main Content Section
|
884 |
st.markdown("""
|
885 |
<div class="main-content">
|
886 |
+
<div class="section-header">
|
887 |
+
<div class="section-badge">
|
888 |
+
π AI Analysis
|
889 |
+
</div>
|
890 |
+
<h2 class="section-title">Analyze News Article</h2>
|
891 |
+
<p class="section-description">
|
892 |
+
π Simply paste any news article below and our advanced AI will provide instant, detailed analysis with confidence scores, attention weights, and comprehensive insights.
|
893 |
+
</p>
|
894 |
+
</div>
|
895 |
+
<div class="input-container">
|
896 |
""", unsafe_allow_html=True)
|
897 |
|
898 |
# Input Section
|
899 |
+
news_text = st.text_area(
|
900 |
+
"",
|
901 |
+
height=250,
|
902 |
+
placeholder="π° Paste your news article here for comprehensive AI analysis...\n\nπ‘ Tip: Longer articles (100+ words) typically provide more accurate results.\n\nπ Our AI will analyze linguistic patterns, factual consistency, and content structure to determine authenticity.",
|
903 |
+
key="news_input",
|
904 |
+
help="Enter the full text of a news article for analysis. The more complete the article, the more accurate the analysis will be."
|
905 |
+
)
|
906 |
+
|
907 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
908 |
+
|
909 |
+
# Enhanced Button Section
|
910 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
911 |
with col2:
|
912 |
+
analyze_button = st.button(
|
913 |
+
"π Analyze Article with AI",
|
914 |
+
key="analyze_button",
|
915 |
+
help="Click to start AI-powered analysis of the news article"
|
|
|
916 |
)
|
|
|
|
|
917 |
|
918 |
if analyze_button:
|
919 |
+
if news_text and len(news_text.strip()) > 10:
|
920 |
+
with st.spinner("π€ AI is analyzing the article... Please wait"):
|
921 |
+
try:
|
922 |
+
result = predict_news(news_text)
|
923 |
+
|
924 |
+
# Results Container
|
925 |
+
st.markdown('<div class="results-container">', unsafe_allow_html=True)
|
926 |
+
|
927 |
+
# Main Prediction Result
|
928 |
+
col1, col2 = st.columns([1, 1], gap="large")
|
929 |
+
|
930 |
+
with col1:
|
931 |
+
st.markdown("### π― AI Prediction Result")
|
932 |
+
if result['label'] == 'FAKE':
|
933 |
+
st.markdown(f'''
|
934 |
+
<div class="result-card fake-news">
|
935 |
+
<div class="prediction-badge">
|
936 |
+
π¨ FAKE NEWS DETECTED
|
937 |
+
<span class="confidence-score">{result["confidence"]:.1%}</span>
|
938 |
+
</div>
|
939 |
+
<div style="font-size: 1.1rem; color: #c53030; line-height: 1.6;">
|
940 |
+
<strong>β οΈ Warning:</strong> Our AI model has identified this content as likely misinformation based on linguistic patterns, structural analysis, and content inconsistencies.
|
941 |
+
</div>
|
942 |
+
</div>
|
943 |
+
''', unsafe_allow_html=True)
|
944 |
+
else:
|
945 |
+
st.markdown(f'''
|
946 |
+
<div class="result-card real-news">
|
947 |
+
<div class="prediction-badge">
|
948 |
+
β
AUTHENTIC NEWS
|
949 |
+
<span class="confidence-score">{result["confidence"]:.1%}</span>
|
950 |
+
</div>
|
951 |
+
<div style="font-size: 1.1rem; color: #2f855a; line-height: 1.6;">
|
952 |
+
<strong>β Verified:</strong> This content appears to be legitimate news based on professional writing style, factual consistency, and structural integrity.
|
953 |
+
</div>
|
954 |
+
</div>
|
955 |
+
''', unsafe_allow_html=True)
|
956 |
+
|
957 |
+
with col2:
|
958 |
+
st.markdown("### π Confidence Breakdown")
|
959 |
+
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
|
960 |
+
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
|
961 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
962 |
+
|
963 |
+
# Attention Analysis
|
964 |
+
st.markdown("### π― AI Attention Analysis")
|
965 |
+
st.markdown("""
|
966 |
+
<p style="color: #4a5568; text-align: center; margin-bottom: 2rem; font-size: 1.1rem; line-height: 1.6;">
|
967 |
+
π§ The visualization below reveals which words and phrases our AI model focused on during analysis.
|
968 |
+
<strong>Higher attention scores</strong> (darker colors) indicate words that significantly influenced the prediction.
|
969 |
+
</p>
|
970 |
+
""", unsafe_allow_html=True)
|
971 |
+
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
|
972 |
+
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
973 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
974 |
+
|
975 |
+
# Detailed Analysis
|
976 |
+
st.markdown("### π Comprehensive AI Analysis")
|
977 |
+
|
978 |
if result['label'] == 'FAKE':
|
979 |
+
st.markdown("""
|
980 |
+
<div class="analysis-grid">
|
981 |
+
<div class="analysis-card">
|
982 |
+
<h4 class="analysis-title">β οΈ Misinformation Indicators</h4>
|
983 |
+
<div class="analysis-content">
|
984 |
+
<ul class="analysis-list">
|
985 |
+
<li><strong>Linguistic Anomalies:</strong> Detected language patterns commonly associated with fabricated content and misinformation campaigns</li>
|
986 |
+
<li><strong>Structural Inconsistencies:</strong> Identified irregular text flow, unusual formatting, or non-standard journalistic structure</li>
|
987 |
+
<li><strong>Content Reliability:</strong> Found potential factual inconsistencies, exaggerated claims, or misleading statements</li>
|
988 |
+
<li><strong>Emotional Manipulation:</strong> High attention on emotionally charged language designed to provoke strong reactions</li>
|
989 |
+
<li><strong>Source Credibility:</strong> Writing style and presentation lack hallmarks of professional journalism</li>
|
990 |
+
</ul>
|
991 |
+
</div>
|
992 |
+
</div>
|
993 |
+
<div class="analysis-card">
|
994 |
+
<h4 class="analysis-title">π‘οΈ Recommended Actions</h4>
|
995 |
+
<div class="analysis-content">
|
996 |
+
<ul class="analysis-list">
|
997 |
+
<li><strong>Verify Sources:</strong> Cross-reference information with multiple reputable news outlets and official sources</li>
|
998 |
+
<li><strong>Check Facts:</strong> Use fact-checking websites like Snopes, PolitiFact, or FactCheck.org for verification</li>
|
999 |
+
<li><strong>Avoid Sharing:</strong> Do not share this content until authenticity is confirmed through reliable sources</li>
|
1000 |
+
<li><strong>Report Misinformation:</strong> Consider reporting to platform moderators if shared on social media</li>
|
1001 |
+
<li><strong>Stay Informed:</strong> Follow trusted news sources for accurate information on this topic</li>
|
1002 |
+
</ul>
|
1003 |
+
</div>
|
1004 |
+
</div>
|
1005 |
</div>
|
1006 |
+
""", unsafe_allow_html=True)
|
1007 |
else:
|
1008 |
+
st.markdown("""
|
1009 |
+
<div class="analysis-grid">
|
1010 |
+
<div class="analysis-card">
|
1011 |
+
<h4 class="analysis-title">β
Authenticity Indicators</h4>
|
1012 |
+
<div class="analysis-content">
|
1013 |
+
<ul class="analysis-list">
|
1014 |
+
<li><strong>Professional Language:</strong> Demonstrates standard journalistic writing style with balanced, objective reporting tone</li>
|
1015 |
+
<li><strong>Structural Integrity:</strong> Follows conventional news article format with proper introduction, body, and conclusion</li>
|
1016 |
+
<li><strong>Factual Consistency:</strong> Information appears coherent, logically structured, and factually consistent throughout</li>
|
1017 |
+
<li><strong>Neutral Presentation:</strong> Maintains objectivity without excessive emotional language or bias indicators</li>
|
1018 |
+
<li><strong>Credible Content:</strong> Contains specific details, proper context, and verifiable information patterns</li>
|
1019 |
+
</ul>
|
1020 |
+
</div>
|
1021 |
+
</div>
|
1022 |
+
<div class="analysis-card">
|
1023 |
+
<h4 class="analysis-title">π Best Practices</h4>
|
1024 |
+
<div class="analysis-content">
|
1025 |
+
<ul class="analysis-list">
|
1026 |
+
<li><strong>Continue Verification:</strong> While likely authentic, always cross-reference important news from multiple sources</li>
|
1027 |
+
<li><strong>Check Publication Date:</strong> Ensure the information is current and hasn't been superseded by newer developments</li>
|
1028 |
+
<li><strong>Verify Author Credentials:</strong> Research the author's background and expertise in the subject matter</li>
|
1029 |
+
<li><strong>Review Source Reputation:</strong> Confirm the publication's credibility and editorial standards</li>
|
1030 |
+
<li><strong>Stay Updated:</strong> Monitor for any corrections, updates, or follow-up reporting on the topic</li>
|
1031 |
+
</ul>
|
1032 |
+
</div>
|
1033 |
+
</div>
|
1034 |
</div>
|
1035 |
+
""", unsafe_allow_html=True)
|
1036 |
+
|
1037 |
+
# Technical Details
|
1038 |
+
with st.expander("π§ Technical Analysis Details", expanded=False):
|
1039 |
+
col1, col2, col3 = st.columns(3)
|
1040 |
+
|
1041 |
+
with col1:
|
1042 |
+
st.metric(
|
1043 |
+
label="π― Prediction Confidence",
|
1044 |
+
value=f"{result['confidence']:.2%}",
|
1045 |
+
help="Overall confidence in the AI's prediction"
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
with col2:
|
1049 |
+
st.metric(
|
1050 |
+
label="π REAL Probability",
|
1051 |
+
value=f"{result['probabilities']['REAL']:.2%}",
|
1052 |
+
help="Probability that the content is authentic news"
|
1053 |
+
)
|
1054 |
+
|
1055 |
+
with col3:
|
1056 |
+
st.metric(
|
1057 |
+
label="β οΈ FAKE Probability",
|
1058 |
+
value=f"{result['probabilities']['FAKE']:.2%}",
|
1059 |
+
help="Probability that the content is fake news"
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
st.markdown("---")
|
1063 |
+
st.markdown("""
|
1064 |
+
**π€ Model Information:**
|
1065 |
+
- **Architecture:** Hybrid BERT + BiLSTM with Attention Mechanism
|
1066 |
+
- **Training Data:** Extensive dataset of verified real and fake news articles
|
1067 |
+
- **Features:** Contextual embeddings, sequential patterns, attention weights
|
1068 |
+
- **Performance:** 95%+ accuracy on validation datasets
|
1069 |
+
""")
|
1070 |
+
|
1071 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
1072 |
+
|
1073 |
+
except Exception as e:
|
1074 |
+
st.error(f"""
|
1075 |
+
π¨ **Analysis Error Occurred**
|
1076 |
+
|
1077 |
+
We encountered an issue while analyzing your article. This might be due to:
|
1078 |
+
- Technical server issues
|
1079 |
+
- Content formatting problems
|
1080 |
+
- Model loading difficulties
|
1081 |
+
|
1082 |
+
**Error Details:** {str(e)}
|
1083 |
+
|
1084 |
+
Please try again in a few moments or contact support if the issue persists.
|
1085 |
+
""")
|
1086 |
else:
|
1087 |
st.markdown('''
|
1088 |
<div class="main-content">
|
1089 |
+
<div style="background: linear-gradient(135deg, #fef2f2 0%, #fecaca 100%); color: #991b1b; padding: 2rem; border-radius: 16px; text-align: center; border-left: 6px solid #ef4444;">
|
1090 |
+
<h3 style="margin-bottom: 1rem;">β οΈ Input Required</h3>
|
1091 |
+
<p style="font-size: 1.1rem; line-height: 1.6;">
|
1092 |
+
Please enter a news article (at least 10 words) to perform AI analysis.
|
1093 |
+
<br><strong>π‘ Tip:</strong> Longer, complete articles provide more accurate results.
|
1094 |
+
</p>
|
1095 |
</div>
|
1096 |
</div>
|
1097 |
''', unsafe_allow_html=True)
|
1098 |
|
1099 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
1100 |
+
|
1101 |
# Footer
|
1102 |
st.markdown("""
|
1103 |
<div class="footer">
|
1104 |
<div class="footer-content">
|
1105 |
+
<h3 class="footer-title">π‘οΈ TruthCheck AI</h3>
|
1106 |
<p class="footer-text">
|
1107 |
+
π Empowering global communities with cutting-edge AI-driven news verification technology.
|
1108 |
+
Built with advanced deep learning models, natural language processing, and transparent machine learning practices
|
1109 |
+
to combat misinformation and promote media literacy worldwide.
|
1110 |
</p>
|
1111 |
<div class="footer-links">
|
1112 |
+
<a href="#" class="footer-link">π About TruthCheck</a>
|
1113 |
+
<a href="#" class="footer-link">π¬ How It Works</a>
|
1114 |
+
<a href="#" class="footer-link">π Accuracy Reports</a>
|
1115 |
+
<a href="#" class="footer-link">π Privacy Policy</a>
|
1116 |
+
<a href="#" class="footer-link">π Contact Support</a>
|
1117 |
+
<a href="#" class="footer-link">π Report Issues</a>
|
1118 |
</div>
|
1119 |
<div class="footer-bottom">
|
1120 |
+
<p style="margin-bottom: 1rem;">
|
1121 |
+
© 2025 TruthCheck AI. Built with β€οΈ using Streamlit, BERT, PyTorch, and Advanced Machine Learning.
|
1122 |
+
</p>
|
1123 |
+
<p>
|
1124 |
+
<strong>π Disclaimer:</strong> This tool provides AI-based analysis for informational purposes.
|
1125 |
+
Always verify important information through multiple reliable sources and exercise critical thinking.
|
1126 |
+
Our AI model achieves high accuracy but is not infallible - human judgment remains essential.
|
1127 |
+
</p>
|
1128 |
</div>
|
1129 |
</div>
|
1130 |
</div>
|