Spaces:
Sleeping
Sleeping
Update src/app.py
#2
by
KhaqanNasir
- opened
- src/app.py +317 -84
src/app.py
CHANGED
@@ -1,3 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
import pandas as pd
|
@@ -35,33 +278,21 @@ from src.models.hybrid_model import HybridFakeNewsDetector
|
|
35 |
from src.config.config import *
|
36 |
from src.data.preprocessor import TextPreprocessor
|
37 |
|
38 |
-
# Page config is set in main app.py
|
39 |
-
|
40 |
@st.cache_resource
|
41 |
def load_model_and_tokenizer():
|
42 |
"""Load the model and tokenizer (cached)."""
|
43 |
-
# Initialize model
|
44 |
model = HybridFakeNewsDetector(
|
45 |
bert_model_name=BERT_MODEL_NAME,
|
46 |
lstm_hidden_size=LSTM_HIDDEN_SIZE,
|
47 |
lstm_num_layers=LSTM_NUM_LAYERS,
|
48 |
dropout_rate=DROPOUT_RATE
|
49 |
)
|
50 |
-
|
51 |
-
# Load trained weights
|
52 |
state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
|
53 |
-
|
54 |
-
# Filter out unexpected keys
|
55 |
model_state_dict = model.state_dict()
|
56 |
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
|
57 |
-
|
58 |
-
# Load the filtered state dict
|
59 |
model.load_state_dict(filtered_state_dict, strict=False)
|
60 |
model.eval()
|
61 |
-
|
62 |
-
# Initialize tokenizer
|
63 |
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
|
64 |
-
|
65 |
return model, tokenizer
|
66 |
|
67 |
@st.cache_resource
|
@@ -71,14 +302,9 @@ def get_preprocessor():
|
|
71 |
|
72 |
def predict_news(text):
|
73 |
"""Predict if the given news is fake or real."""
|
74 |
-
# Get model, tokenizer, and preprocessor from cache
|
75 |
model, tokenizer = load_model_and_tokenizer()
|
76 |
preprocessor = get_preprocessor()
|
77 |
-
|
78 |
-
# Preprocess text
|
79 |
processed_text = preprocessor.preprocess_text(text)
|
80 |
-
|
81 |
-
# Tokenize
|
82 |
encoding = tokenizer.encode_plus(
|
83 |
processed_text,
|
84 |
add_special_tokens=True,
|
@@ -88,8 +314,6 @@ def predict_news(text):
|
|
88 |
return_attention_mask=True,
|
89 |
return_tensors='pt'
|
90 |
)
|
91 |
-
|
92 |
-
# Get prediction
|
93 |
with torch.no_grad():
|
94 |
outputs = model(
|
95 |
encoding['input_ids'],
|
@@ -98,10 +322,7 @@ def predict_news(text):
|
|
98 |
probabilities = torch.softmax(outputs['logits'], dim=1)
|
99 |
prediction = torch.argmax(outputs['logits'], dim=1)
|
100 |
attention_weights = outputs['attention_weights']
|
101 |
-
|
102 |
-
# Convert attention weights to numpy and get the first sequence
|
103 |
attention_weights_np = attention_weights[0].cpu().numpy()
|
104 |
-
|
105 |
return {
|
106 |
'prediction': prediction.item(),
|
107 |
'label': 'FAKE' if prediction.item() == 1 else 'REAL',
|
@@ -121,121 +342,133 @@ def plot_confidence(probabilities):
|
|
121 |
y=list(probabilities.values()),
|
122 |
text=[f'{p:.2%}' for p in probabilities.values()],
|
123 |
textposition='auto',
|
|
|
124 |
)
|
125 |
])
|
126 |
-
|
127 |
fig.update_layout(
|
128 |
title='Prediction Confidence',
|
129 |
xaxis_title='Class',
|
130 |
yaxis_title='Probability',
|
131 |
-
yaxis_range=[0, 1]
|
|
|
132 |
)
|
133 |
-
|
134 |
return fig
|
135 |
|
136 |
def plot_attention(text, attention_weights):
|
137 |
"""Plot attention weights."""
|
138 |
tokens = text.split()
|
139 |
-
attention_weights = attention_weights[:len(tokens)]
|
140 |
-
|
141 |
-
# Ensure attention weights are in the correct format
|
142 |
if isinstance(attention_weights, (list, np.ndarray)):
|
143 |
attention_weights = np.array(attention_weights).flatten()
|
144 |
-
|
145 |
-
# Format weights for display
|
146 |
formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
|
147 |
-
|
148 |
fig = go.Figure(data=[
|
149 |
go.Bar(
|
150 |
x=tokens,
|
151 |
y=attention_weights,
|
152 |
text=formatted_weights,
|
153 |
textposition='auto',
|
|
|
154 |
)
|
155 |
])
|
156 |
-
|
157 |
fig.update_layout(
|
158 |
title='Attention Weights',
|
159 |
xaxis_title='Tokens',
|
160 |
yaxis_title='Attention Weight',
|
161 |
-
xaxis_tickangle=45
|
|
|
162 |
)
|
163 |
-
|
164 |
return fig
|
165 |
|
166 |
def main():
|
167 |
-
|
168 |
-
st.
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
# Main content
|
184 |
-
st.header("News
|
185 |
-
|
186 |
-
# Text input
|
187 |
news_text = st.text_area(
|
188 |
"Enter the news article to analyze:",
|
189 |
height=200,
|
190 |
placeholder="Paste your news article here..."
|
191 |
)
|
192 |
|
193 |
-
if st.button("Analyze"):
|
194 |
if news_text:
|
195 |
with st.spinner("Analyzing the news article..."):
|
196 |
-
# Get prediction
|
197 |
result = predict_news(news_text)
|
198 |
-
|
199 |
-
# Display result
|
200 |
-
col1, col2 = st.columns(2)
|
201 |
|
202 |
with col1:
|
203 |
-
st.
|
204 |
if result['label'] == 'FAKE':
|
205 |
-
st.
|
206 |
else:
|
207 |
-
st.
|
208 |
|
209 |
with col2:
|
210 |
-
st.
|
211 |
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
|
212 |
|
213 |
-
|
214 |
-
st.
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
""")
|
219 |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
220 |
|
221 |
-
|
222 |
-
st.subheader("Model Explanation")
|
223 |
if result['label'] == 'FAKE':
|
224 |
-
st.
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
230 |
else:
|
231 |
-
st.
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
237 |
else:
|
238 |
-
st.
|
239 |
|
240 |
if __name__ == "__main__":
|
241 |
-
main()
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import torch
|
3 |
+
# import pandas as pd
|
4 |
+
# import numpy as np
|
5 |
+
# from pathlib import Path
|
6 |
+
# import sys
|
7 |
+
# import plotly.express as px
|
8 |
+
# import plotly.graph_objects as go
|
9 |
+
# from transformers import BertTokenizer
|
10 |
+
# import nltk
|
11 |
+
|
12 |
+
# # Download required NLTK data
|
13 |
+
# try:
|
14 |
+
# nltk.data.find('tokenizers/punkt')
|
15 |
+
# except LookupError:
|
16 |
+
# nltk.download('punkt')
|
17 |
+
# try:
|
18 |
+
# nltk.data.find('corpora/stopwords')
|
19 |
+
# except LookupError:
|
20 |
+
# nltk.download('stopwords')
|
21 |
+
# try:
|
22 |
+
# nltk.data.find('tokenizers/punkt_tab')
|
23 |
+
# except LookupError:
|
24 |
+
# nltk.download('punkt_tab')
|
25 |
+
# try:
|
26 |
+
# nltk.data.find('corpora/wordnet')
|
27 |
+
# except LookupError:
|
28 |
+
# nltk.download('wordnet')
|
29 |
+
|
30 |
+
# # Add project root to Python path
|
31 |
+
# project_root = Path(__file__).parent.parent
|
32 |
+
# sys.path.append(str(project_root))
|
33 |
+
|
34 |
+
# from src.models.hybrid_model import HybridFakeNewsDetector
|
35 |
+
# from src.config.config import *
|
36 |
+
# from src.data.preprocessor import TextPreprocessor
|
37 |
+
|
38 |
+
# # Page config is set in main app.py
|
39 |
+
|
40 |
+
# @st.cache_resource
|
41 |
+
# def load_model_and_tokenizer():
|
42 |
+
# """Load the model and tokenizer (cached)."""
|
43 |
+
# # Initialize model
|
44 |
+
# model = HybridFakeNewsDetector(
|
45 |
+
# bert_model_name=BERT_MODEL_NAME,
|
46 |
+
# lstm_hidden_size=LSTM_HIDDEN_SIZE,
|
47 |
+
# lstm_num_layers=LSTM_NUM_LAYERS,
|
48 |
+
# dropout_rate=DROPOUT_RATE
|
49 |
+
# )
|
50 |
+
|
51 |
+
# # Load trained weights
|
52 |
+
# state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
|
53 |
+
|
54 |
+
# # Filter out unexpected keys
|
55 |
+
# model_state_dict = model.state_dict()
|
56 |
+
# filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
|
57 |
+
|
58 |
+
# # Load the filtered state dict
|
59 |
+
# model.load_state_dict(filtered_state_dict, strict=False)
|
60 |
+
# model.eval()
|
61 |
+
|
62 |
+
# # Initialize tokenizer
|
63 |
+
# tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
|
64 |
+
|
65 |
+
# return model, tokenizer
|
66 |
+
|
67 |
+
# @st.cache_resource
|
68 |
+
# def get_preprocessor():
|
69 |
+
# """Get the text preprocessor (cached)."""
|
70 |
+
# return TextPreprocessor()
|
71 |
+
|
72 |
+
# def predict_news(text):
|
73 |
+
# """Predict if the given news is fake or real."""
|
74 |
+
# # Get model, tokenizer, and preprocessor from cache
|
75 |
+
# model, tokenizer = load_model_and_tokenizer()
|
76 |
+
# preprocessor = get_preprocessor()
|
77 |
+
|
78 |
+
# # Preprocess text
|
79 |
+
# processed_text = preprocessor.preprocess_text(text)
|
80 |
+
|
81 |
+
# # Tokenize
|
82 |
+
# encoding = tokenizer.encode_plus(
|
83 |
+
# processed_text,
|
84 |
+
# add_special_tokens=True,
|
85 |
+
# max_length=MAX_SEQUENCE_LENGTH,
|
86 |
+
# padding='max_length',
|
87 |
+
# truncation=True,
|
88 |
+
# return_attention_mask=True,
|
89 |
+
# return_tensors='pt'
|
90 |
+
# )
|
91 |
+
|
92 |
+
# # Get prediction
|
93 |
+
# with torch.no_grad():
|
94 |
+
# outputs = model(
|
95 |
+
# encoding['input_ids'],
|
96 |
+
# encoding['attention_mask']
|
97 |
+
# )
|
98 |
+
# probabilities = torch.softmax(outputs['logits'], dim=1)
|
99 |
+
# prediction = torch.argmax(outputs['logits'], dim=1)
|
100 |
+
# attention_weights = outputs['attention_weights']
|
101 |
+
|
102 |
+
# # Convert attention weights to numpy and get the first sequence
|
103 |
+
# attention_weights_np = attention_weights[0].cpu().numpy()
|
104 |
+
|
105 |
+
# return {
|
106 |
+
# 'prediction': prediction.item(),
|
107 |
+
# 'label': 'FAKE' if prediction.item() == 1 else 'REAL',
|
108 |
+
# 'confidence': torch.max(probabilities, dim=1)[0].item(),
|
109 |
+
# 'probabilities': {
|
110 |
+
# 'REAL': probabilities[0][0].item(),
|
111 |
+
# 'FAKE': probabilities[0][1].item()
|
112 |
+
# },
|
113 |
+
# 'attention_weights': attention_weights_np
|
114 |
+
# }
|
115 |
+
|
116 |
+
# def plot_confidence(probabilities):
|
117 |
+
# """Plot prediction confidence."""
|
118 |
+
# fig = go.Figure(data=[
|
119 |
+
# go.Bar(
|
120 |
+
# x=list(probabilities.keys()),
|
121 |
+
# y=list(probabilities.values()),
|
122 |
+
# text=[f'{p:.2%}' for p in probabilities.values()],
|
123 |
+
# textposition='auto',
|
124 |
+
# )
|
125 |
+
# ])
|
126 |
+
|
127 |
+
# fig.update_layout(
|
128 |
+
# title='Prediction Confidence',
|
129 |
+
# xaxis_title='Class',
|
130 |
+
# yaxis_title='Probability',
|
131 |
+
# yaxis_range=[0, 1]
|
132 |
+
# )
|
133 |
+
|
134 |
+
# return fig
|
135 |
+
|
136 |
+
# def plot_attention(text, attention_weights):
|
137 |
+
# """Plot attention weights."""
|
138 |
+
# tokens = text.split()
|
139 |
+
# attention_weights = attention_weights[:len(tokens)] # Truncate to match tokens
|
140 |
+
|
141 |
+
# # Ensure attention weights are in the correct format
|
142 |
+
# if isinstance(attention_weights, (list, np.ndarray)):
|
143 |
+
# attention_weights = np.array(attention_weights).flatten()
|
144 |
+
|
145 |
+
# # Format weights for display
|
146 |
+
# formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
|
147 |
+
|
148 |
+
# fig = go.Figure(data=[
|
149 |
+
# go.Bar(
|
150 |
+
# x=tokens,
|
151 |
+
# y=attention_weights,
|
152 |
+
# text=formatted_weights,
|
153 |
+
# textposition='auto',
|
154 |
+
# )
|
155 |
+
# ])
|
156 |
+
|
157 |
+
# fig.update_layout(
|
158 |
+
# title='Attention Weights',
|
159 |
+
# xaxis_title='Tokens',
|
160 |
+
# yaxis_title='Attention Weight',
|
161 |
+
# xaxis_tickangle=45
|
162 |
+
# )
|
163 |
+
|
164 |
+
# return fig
|
165 |
+
|
166 |
+
# def main():
|
167 |
+
# st.title("📰 Fake News Detection System")
|
168 |
+
# st.write("""
|
169 |
+
# This application uses a hybrid deep learning model (BERT + BiLSTM + Attention)
|
170 |
+
# to detect fake news articles. Enter a news article below to analyze it.
|
171 |
+
# """)
|
172 |
+
|
173 |
+
# # Sidebar
|
174 |
+
# st.sidebar.title("About")
|
175 |
+
# st.sidebar.info("""
|
176 |
+
|
177 |
+
# The model combines:
|
178 |
+
# - BERT for contextual embeddings
|
179 |
+
# - BiLSTM for sequence modeling
|
180 |
+
# - Attention mechanism for interpretability
|
181 |
+
# """)
|
182 |
+
|
183 |
+
# # Main content
|
184 |
+
# st.header("News Analysis")
|
185 |
+
|
186 |
+
# # Text input
|
187 |
+
# news_text = st.text_area(
|
188 |
+
# "Enter the news article to analyze:",
|
189 |
+
# height=200,
|
190 |
+
# placeholder="Paste your news article here..."
|
191 |
+
# )
|
192 |
+
|
193 |
+
# if st.button("Analyze"):
|
194 |
+
# if news_text:
|
195 |
+
# with st.spinner("Analyzing the news article..."):
|
196 |
+
# # Get prediction
|
197 |
+
# result = predict_news(news_text)
|
198 |
+
|
199 |
+
# # Display result
|
200 |
+
# col1, col2 = st.columns(2)
|
201 |
+
|
202 |
+
# with col1:
|
203 |
+
# st.subheader("Prediction")
|
204 |
+
# if result['label'] == 'FAKE':
|
205 |
+
# st.error(f"🔴 This news is likely FAKE (Confidence: {result['confidence']:.2%})")
|
206 |
+
# else:
|
207 |
+
# st.success(f"🟢 This news is likely REAL (Confidence: {result['confidence']:.2%})")
|
208 |
+
|
209 |
+
# with col2:
|
210 |
+
# st.subheader("Confidence Scores")
|
211 |
+
# st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
|
212 |
+
|
213 |
+
# # Show attention visualization
|
214 |
+
# st.subheader("Attention Analysis")
|
215 |
+
# st.write("""
|
216 |
+
# The attention weights show which parts of the text the model focused on
|
217 |
+
# while making its prediction. Higher weights indicate more important tokens.
|
218 |
+
# """)
|
219 |
+
# st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
220 |
+
|
221 |
+
# # Show model explanation
|
222 |
+
# st.subheader("Model Explanation")
|
223 |
+
# if result['label'] == 'FAKE':
|
224 |
+
# st.write("""
|
225 |
+
# The model identified this as fake news based on:
|
226 |
+
# - Linguistic patterns typical of fake news
|
227 |
+
# - Inconsistencies in the content
|
228 |
+
# - Attention weights on suspicious phrases
|
229 |
+
# """)
|
230 |
+
# else:
|
231 |
+
# st.write("""
|
232 |
+
# The model identified this as real news based on:
|
233 |
+
# - Credible language patterns
|
234 |
+
# - Consistent information
|
235 |
+
# - Attention weights on factual statements
|
236 |
+
# """)
|
237 |
+
# else:
|
238 |
+
# st.warning("Please enter a news article to analyze.")
|
239 |
+
|
240 |
+
# if __name__ == "__main__":
|
241 |
+
# main()
|
242 |
+
|
243 |
+
|
244 |
import streamlit as st
|
245 |
import torch
|
246 |
import pandas as pd
|
|
|
278 |
from src.config.config import *
|
279 |
from src.data.preprocessor import TextPreprocessor
|
280 |
|
|
|
|
|
281 |
@st.cache_resource
|
282 |
def load_model_and_tokenizer():
|
283 |
"""Load the model and tokenizer (cached)."""
|
|
|
284 |
model = HybridFakeNewsDetector(
|
285 |
bert_model_name=BERT_MODEL_NAME,
|
286 |
lstm_hidden_size=LSTM_HIDDEN_SIZE,
|
287 |
lstm_num_layers=LSTM_NUM_LAYERS,
|
288 |
dropout_rate=DROPOUT_RATE
|
289 |
)
|
|
|
|
|
290 |
state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
|
|
|
|
|
291 |
model_state_dict = model.state_dict()
|
292 |
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
|
|
|
|
|
293 |
model.load_state_dict(filtered_state_dict, strict=False)
|
294 |
model.eval()
|
|
|
|
|
295 |
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
|
|
|
296 |
return model, tokenizer
|
297 |
|
298 |
@st.cache_resource
|
|
|
302 |
|
303 |
def predict_news(text):
|
304 |
"""Predict if the given news is fake or real."""
|
|
|
305 |
model, tokenizer = load_model_and_tokenizer()
|
306 |
preprocessor = get_preprocessor()
|
|
|
|
|
307 |
processed_text = preprocessor.preprocess_text(text)
|
|
|
|
|
308 |
encoding = tokenizer.encode_plus(
|
309 |
processed_text,
|
310 |
add_special_tokens=True,
|
|
|
314 |
return_attention_mask=True,
|
315 |
return_tensors='pt'
|
316 |
)
|
|
|
|
|
317 |
with torch.no_grad():
|
318 |
outputs = model(
|
319 |
encoding['input_ids'],
|
|
|
322 |
probabilities = torch.softmax(outputs['logits'], dim=1)
|
323 |
prediction = torch.argmax(outputs['logits'], dim=1)
|
324 |
attention_weights = outputs['attention_weights']
|
|
|
|
|
325 |
attention_weights_np = attention_weights[0].cpu().numpy()
|
|
|
326 |
return {
|
327 |
'prediction': prediction.item(),
|
328 |
'label': 'FAKE' if prediction.item() == 1 else 'REAL',
|
|
|
342 |
y=list(probabilities.values()),
|
343 |
text=[f'{p:.2%}' for p in probabilities.values()],
|
344 |
textposition='auto',
|
345 |
+
marker_color=['#4B5EAA', '#FF6B6B']
|
346 |
)
|
347 |
])
|
|
|
348 |
fig.update_layout(
|
349 |
title='Prediction Confidence',
|
350 |
xaxis_title='Class',
|
351 |
yaxis_title='Probability',
|
352 |
+
yaxis_range=[0, 1],
|
353 |
+
template='plotly_white'
|
354 |
)
|
|
|
355 |
return fig
|
356 |
|
357 |
def plot_attention(text, attention_weights):
|
358 |
"""Plot attention weights."""
|
359 |
tokens = text.split()
|
360 |
+
attention_weights = attention_weights[:len(tokens)]
|
|
|
|
|
361 |
if isinstance(attention_weights, (list, np.ndarray)):
|
362 |
attention_weights = np.array(attention_weights).flatten()
|
|
|
|
|
363 |
formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
|
|
|
364 |
fig = go.Figure(data=[
|
365 |
go.Bar(
|
366 |
x=tokens,
|
367 |
y=attention_weights,
|
368 |
text=formatted_weights,
|
369 |
textposition='auto',
|
370 |
+
marker_color='#4B5EAA'
|
371 |
)
|
372 |
])
|
|
|
373 |
fig.update_layout(
|
374 |
title='Attention Weights',
|
375 |
xaxis_title='Tokens',
|
376 |
yaxis_title='Attention Weight',
|
377 |
+
xaxis_tickangle=45,
|
378 |
+
template='plotly_white'
|
379 |
)
|
|
|
380 |
return fig
|
381 |
|
382 |
def main():
|
383 |
+
# Hero section
|
384 |
+
st.markdown("""
|
385 |
+
<div class="hero-section">
|
386 |
+
<div style="display: flex; align-items: center; gap: 2rem;">
|
387 |
+
<div style="flex: 1;">
|
388 |
+
<h1 style="font-size: 2.5rem; color: #333333;">TrueCheck</h1>
|
389 |
+
<p style="font-size: 1.2rem; color: #666666;">
|
390 |
+
Detect fake news with our advanced AI-powered system using BERT, BiLSTM, and Attention mechanisms.
|
391 |
+
</p>
|
392 |
+
</div>
|
393 |
+
<div style="flex: 1;">
|
394 |
+
<img src="https://img.freepik.com/free-vector/fake-news-concept-illustration_114360-3189.jpg" style="width: 100%; border-radius: 12px;" alt="Fake News Detection">
|
395 |
+
</div>
|
396 |
+
</div>
|
397 |
+
</div>
|
398 |
+
""", unsafe_allow_html=True)
|
399 |
+
|
400 |
+
# Sidebar info
|
401 |
+
st.sidebar.markdown("---")
|
402 |
+
st.sidebar.header("About TrueCheck")
|
403 |
+
st.sidebar.markdown("""
|
404 |
+
<div style="font-size: 0.9rem; color: #666666;">
|
405 |
+
<p>TrueCheck uses a hybrid deep learning model combining:</p>
|
406 |
+
<ul>
|
407 |
+
<li>BERT for contextual embeddings</li>
|
408 |
+
<li>BiLSTM for sequence modeling</li>
|
409 |
+
<li>Attention mechanism for interpretability</li>
|
410 |
+
</ul>
|
411 |
+
</div>
|
412 |
+
""", unsafe_allow_html=True)
|
413 |
+
|
414 |
# Main content
|
415 |
+
st.header("Analyze News")
|
|
|
|
|
416 |
news_text = st.text_area(
|
417 |
"Enter the news article to analyze:",
|
418 |
height=200,
|
419 |
placeholder="Paste your news article here..."
|
420 |
)
|
421 |
|
422 |
+
if st.button("Analyze", key="analyze_button"):
|
423 |
if news_text:
|
424 |
with st.spinner("Analyzing the news article..."):
|
|
|
425 |
result = predict_news(news_text)
|
426 |
+
col1, col2 = st.columns([1, 1], gap="large")
|
|
|
|
|
427 |
|
428 |
with col1:
|
429 |
+
st.markdown("### Prediction")
|
430 |
if result['label'] == 'FAKE':
|
431 |
+
st.markdown(f'<div class="flash-message error-message">🔴 This news is likely FAKE (Confidence: {result["confidence"]:.2%})</div>', unsafe_allow_html=True)
|
432 |
else:
|
433 |
+
st.markdown(f'<div class="flash-message success-message">🟢 This news is likely REAL (Confidence: {result["confidence"]:.2%})</div>', unsafe_allow_html=True)
|
434 |
|
435 |
with col2:
|
436 |
+
st.markdown("### Confidence Scores")
|
437 |
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
|
438 |
|
439 |
+
st.markdown("### Attention Analysis")
|
440 |
+
st.markdown("""
|
441 |
+
<p style="color: #666666;">
|
442 |
+
The attention weights show which parts of the text the model focused on while making its prediction. Higher weights indicate more important tokens.
|
443 |
+
</p>
|
444 |
+
""", unsafe_allow_html=True)
|
445 |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
446 |
|
447 |
+
st.markdown("### Model Explanation")
|
|
|
448 |
if result['label'] == 'FAKE':
|
449 |
+
st.markdown("""
|
450 |
+
<div style="background-color: #F4F7FA; padding: 1rem; border-radius: 8px;">
|
451 |
+
<p>The model identified this as fake news based on:</p>
|
452 |
+
<ul>
|
453 |
+
<li>Linguistic patterns typical of fake news</li>
|
454 |
+
<li>Inconsistencies in the content</li>
|
455 |
+
<li>Attention weights on suspicious phrases</li>
|
456 |
+
</ul>
|
457 |
+
</div>
|
458 |
+
""", unsafe_allow_html=True)
|
459 |
else:
|
460 |
+
st.markdown("""
|
461 |
+
<div style="background-color: #F4F7FA; padding: 1rem; border-radius: 8px;">
|
462 |
+
<p>The model identified this as real news based on:</p>
|
463 |
+
<ul>
|
464 |
+
<li>Credible language patterns</li>
|
465 |
+
<li>Consistent information</li>
|
466 |
+
<li>Attention weights on factual statements</li>
|
467 |
+
</ul>
|
468 |
+
</div>
|
469 |
+
""", unsafe_allow_html=True)
|
470 |
else:
|
471 |
+
st.markdown('<div class="flash-message error-message">Please enter a news article to analyze.</div>', unsafe_allow_html=True)
|
472 |
|
473 |
if __name__ == "__main__":
|
474 |
+
main()
|