Spaces:
Runtime error
Runtime error
using json = nlohmann::ordered_json; | |
int32_t get_num_physical_cores() { | |
// enumerate the set of thread siblings, num entries is num cores | |
std::unordered_set<std::string> siblings; | |
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) { | |
std::ifstream thread_siblings("/sys/devices/system/cpu" | |
+ std::to_string(cpu) + "/topology/thread_siblings"); | |
if (!thread_siblings.is_open()) { | |
break; // no more cpus | |
} | |
std::string line; | |
if (std::getline(thread_siblings, line)) { | |
siblings.insert(line); | |
} | |
} | |
if (!siblings.empty()) { | |
return static_cast<int32_t>(siblings.size()); | |
} | |
int32_t num_physical_cores; | |
size_t len = sizeof(num_physical_cores); | |
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0); | |
if (result == 0) { | |
return num_physical_cores; | |
} | |
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0); | |
if (result == 0) { | |
return num_physical_cores; | |
} | |
//TODO: Implement | |
unsigned int n_threads = std::thread::hardware_concurrency(); | |
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; | |
} | |
static void cpuid(unsigned leaf, unsigned subleaf, | |
unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) { | |
__asm__("movq\t%%rbx,%%rsi\n\t" | |
"cpuid\n\t" | |
"xchgq\t%%rbx,%%rsi" | |
: "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx) | |
: "0"(leaf), "2"(subleaf)); | |
} | |
static int pin_cpu(int cpu) { | |
cpu_set_t mask; | |
CPU_ZERO(&mask); | |
CPU_SET(cpu, &mask); | |
return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask); | |
} | |
static bool is_hybrid_cpu(void) { | |
unsigned eax, ebx, ecx, edx; | |
cpuid(7, 0, &eax, &ebx, &ecx, &edx); | |
return !!(edx & (1u << 15)); | |
} | |
static bool is_running_on_efficiency_core(void) { | |
unsigned eax, ebx, ecx, edx; | |
cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx); | |
int intel_atom = 0x20; | |
int core_type = (eax & 0xff000000u) >> 24; | |
return core_type == intel_atom; | |
} | |
static int count_math_cpus(int cpu_count) { | |
int result = 0; | |
for (int cpu = 0; cpu < cpu_count; ++cpu) { | |
if (pin_cpu(cpu)) { | |
return -1; | |
} | |
if (is_running_on_efficiency_core()) { | |
continue; // efficiency cores harm lockstep threading | |
} | |
++cpu; // hyperthreading isn't useful for linear algebra | |
++result; | |
} | |
return result; | |
} | |
/** | |
* Returns number of CPUs on system that are useful for math. | |
*/ | |
int get_math_cpu_count() { | |
int cpu_count = sysconf(_SC_NPROCESSORS_ONLN); | |
if (cpu_count < 1) { | |
return get_num_physical_cores(); | |
} | |
if (is_hybrid_cpu()) { | |
cpu_set_t affinity; | |
if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) { | |
int result = count_math_cpus(cpu_count); | |
pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity); | |
if (result > 0) { | |
return result; | |
} | |
} | |
} | |
return get_num_physical_cores(); | |
} | |
void process_escapes(std::string & input) { | |
std::size_t input_len = input.length(); | |
std::size_t output_idx = 0; | |
for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) { | |
if (input[input_idx] == '\\' && input_idx + 1 < input_len) { | |
switch (input[++input_idx]) { | |
case 'n': input[output_idx++] = '\n'; break; | |
case 'r': input[output_idx++] = '\r'; break; | |
case 't': input[output_idx++] = '\t'; break; | |
case '\'': input[output_idx++] = '\''; break; | |
case '\"': input[output_idx++] = '\"'; break; | |
case '\\': input[output_idx++] = '\\'; break; | |
case 'x': | |
// Handle \x12, etc | |
if (input_idx + 2 < input_len) { | |
const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 }; | |
char *err_p = nullptr; | |
const long val = std::strtol(x, &err_p, 16); | |
if (err_p == x + 2) { | |
input_idx += 2; | |
input[output_idx++] = char(val); | |
break; | |
} | |
} | |
// fall through | |
default: input[output_idx++] = '\\'; | |
input[output_idx++] = input[input_idx]; break; | |
} | |
} else { | |
input[output_idx++] = input[input_idx]; | |
} | |
} | |
input.resize(output_idx); | |
} | |
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { | |
bool result = true; | |
try { | |
if (!gpt_params_parse_ex(argc, argv, params)) { | |
gpt_print_usage(argc, argv, gpt_params()); | |
exit(0); | |
} | |
} | |
catch (const std::invalid_argument & ex) { | |
fprintf(stderr, "%s\n", ex.what()); | |
gpt_print_usage(argc, argv, gpt_params()); | |
exit(1); | |
} | |
return result; | |
} | |
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) { | |
const char * sep = strchr(data, '='); | |
if (sep == nullptr || sep - data >= 128) { | |
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data); | |
return false; | |
} | |
llama_model_kv_override kvo; | |
std::strncpy(kvo.key, data, sep - data); | |
kvo.key[sep - data] = 0; | |
sep++; | |
if (strncmp(sep, "int:", 4) == 0) { | |
sep += 4; | |
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; | |
kvo.val_i64 = std::atol(sep); | |
} else if (strncmp(sep, "float:", 6) == 0) { | |
sep += 6; | |
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; | |
kvo.val_f64 = std::atof(sep); | |
} else if (strncmp(sep, "bool:", 5) == 0) { | |
sep += 5; | |
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; | |
if (std::strcmp(sep, "true") == 0) { | |
kvo.val_bool = true; | |
} else if (std::strcmp(sep, "false") == 0) { | |
kvo.val_bool = false; | |
} else { | |
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data); | |
return false; | |
} | |
} else if (strncmp(sep, "str:", 4) == 0) { | |
sep += 4; | |
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; | |
if (strlen(sep) > 127) { | |
fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data); | |
return false; | |
} | |
strncpy(kvo.val_str, sep, 127); | |
kvo.val_str[127] = '\0'; | |
} else { | |
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data); | |
return false; | |
} | |
overrides.emplace_back(std::move(kvo)); | |
return true; | |
} | |
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) { | |
llama_sampling_params & sparams = params.sparams; | |
if (arg == "-s" || arg == "--seed") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
// This is temporary, in the future the samplign state will be moved fully to llama_sampling_context. | |
params.seed = std::stoul(argv[i]); | |
sparams.seed = std::stoul(argv[i]); | |
return true; | |
} | |
if (arg == "-t" || arg == "--threads") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_threads = std::stoi(argv[i]); | |
if (params.n_threads <= 0) { | |
params.n_threads = std::thread::hardware_concurrency(); | |
} | |
return true; | |
} | |
if (arg == "-tb" || arg == "--threads-batch") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_threads_batch = std::stoi(argv[i]); | |
if (params.n_threads_batch <= 0) { | |
params.n_threads_batch = std::thread::hardware_concurrency(); | |
} | |
return true; | |
} | |
if (arg == "-td" || arg == "--threads-draft") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_threads_draft = std::stoi(argv[i]); | |
if (params.n_threads_draft <= 0) { | |
params.n_threads_draft = std::thread::hardware_concurrency(); | |
} | |
return true; | |
} | |
if (arg == "-tbd" || arg == "--threads-batch-draft") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_threads_batch_draft = std::stoi(argv[i]); | |
if (params.n_threads_batch_draft <= 0) { | |
params.n_threads_batch_draft = std::thread::hardware_concurrency(); | |
} | |
return true; | |
} | |
if (arg == "-p" || arg == "--prompt") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.prompt = argv[i]; | |
return true; | |
} | |
if (arg == "-e" || arg == "--escape") { | |
params.escape = true; | |
return true; | |
} | |
if (arg == "--prompt-cache") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.path_prompt_cache = argv[i]; | |
return true; | |
} | |
if (arg == "--prompt-cache-all") { | |
params.prompt_cache_all = true; | |
return true; | |
} | |
if (arg == "--prompt-cache-ro") { | |
params.prompt_cache_ro = true; | |
return true; | |
} | |
if (arg == "-bf" || arg == "--binary-file") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
std::ifstream file(argv[i], std::ios::binary); | |
if (!file) { | |
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); | |
invalid_param = true; | |
return true; | |
} | |
// store the external file name in params | |
params.prompt_file = argv[i]; | |
std::ostringstream ss; | |
ss << file.rdbuf(); | |
params.prompt = ss.str(); | |
fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]); | |
return true; | |
} | |
if (arg == "-f" || arg == "--file") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
std::ifstream file(argv[i]); | |
if (!file) { | |
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); | |
invalid_param = true; | |
return true; | |
} | |
// store the external file name in params | |
params.prompt_file = argv[i]; | |
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt)); | |
if (!params.prompt.empty() && params.prompt.back() == '\n') { | |
params.prompt.pop_back(); | |
} | |
return true; | |
} | |
if (arg == "-n" || arg == "--n-predict") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_predict = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--top-k") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.top_k = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "-c" || arg == "--ctx-size") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_ctx = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--grp-attn-n" || arg == "-gan") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.grp_attn_n = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--grp-attn-w" || arg == "-gaw") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.grp_attn_w = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--rope-freq-base") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.rope_freq_base = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--rope-freq-scale") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.rope_freq_scale = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--rope-scaling") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
std::string value(argv[i]); | |
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } | |
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } | |
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } | |
else { invalid_param = true; } | |
return true; | |
} | |
if (arg == "--rope-scale") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.rope_freq_scale = 1.0f / std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--yarn-orig-ctx") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.yarn_orig_ctx = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--yarn-ext-factor") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.yarn_ext_factor = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--yarn-attn-factor") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.yarn_attn_factor = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--yarn-beta-fast") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.yarn_beta_fast = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--yarn-beta-slow") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.yarn_beta_slow = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--pooling") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
std::string value(argv[i]); | |
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; } | |
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; } | |
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; } | |
else { invalid_param = true; } | |
return true; | |
} | |
if (arg == "--defrag-thold" || arg == "-dt") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.defrag_thold = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--samplers") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
const auto sampler_names = string_split(argv[i], ';'); | |
sparams.samplers_sequence = sampler_types_from_names(sampler_names, true); | |
return true; | |
} | |
if (arg == "--sampling-seq") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.samplers_sequence = sampler_types_from_chars(argv[i]); | |
return true; | |
} | |
if (arg == "--top-p") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.top_p = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--min-p") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.min_p = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--temp") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.temp = std::stof(argv[i]); | |
sparams.temp = std::max(sparams.temp, 0.0f); | |
return true; | |
} | |
if (arg == "--tfs") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.tfs_z = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--typical") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.typical_p = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--repeat-last-n") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.penalty_last_n = std::stoi(argv[i]); | |
sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n); | |
return true; | |
} | |
if (arg == "--repeat-penalty") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.penalty_repeat = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--frequency-penalty") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.penalty_freq = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--presence-penalty") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.penalty_present = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--dynatemp-range") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.dynatemp_range = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--dynatemp-exp") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.dynatemp_exponent = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--mirostat") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.mirostat = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--mirostat-lr") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.mirostat_eta = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--mirostat-ent") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.mirostat_tau = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "--cfg-negative-prompt") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.cfg_negative_prompt = argv[i]; | |
return true; | |
} | |
if (arg == "--cfg-negative-prompt-file") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
std::ifstream file(argv[i]); | |
if (!file) { | |
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); | |
invalid_param = true; | |
return true; | |
} | |
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt)); | |
if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') { | |
sparams.cfg_negative_prompt.pop_back(); | |
} | |
return true; | |
} | |
if (arg == "--cfg-scale") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.cfg_scale = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "-b" || arg == "--batch-size") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_batch = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "-ub" || arg == "--ubatch-size") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_ubatch = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--keep") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_keep = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--draft") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_draft = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--chunks") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_chunks = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "-np" || arg == "--parallel") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_parallel = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "-ns" || arg == "--sequences") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_sequences = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--p-split" || arg == "-ps") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.p_split = std::stof(argv[i]); | |
return true; | |
} | |
if (arg == "-m" || arg == "--model") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.model = argv[i]; | |
return true; | |
} | |
if (arg == "-md" || arg == "--model-draft") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.model_draft = argv[i]; | |
return true; | |
} | |
if (arg == "-a" || arg == "--alias") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.model_alias = argv[i]; | |
return true; | |
} | |
if (arg == "-mu" || arg == "--model-url") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.model_url = argv[i]; | |
return true; | |
} | |
if (arg == "-hfr" || arg == "--hf-repo") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.hf_repo = argv[i]; | |
return true; | |
} | |
if (arg == "-hff" || arg == "--hf-file") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.hf_file = argv[i]; | |
return true; | |
} | |
if (arg == "--lora") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.lora_adapter.emplace_back(argv[i], 1.0f); | |
params.use_mmap = false; | |
return true; | |
} | |
if (arg == "--lora-scaled") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
const char* lora_adapter = argv[i]; | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i])); | |
params.use_mmap = false; | |
return true; | |
} | |
if (arg == "--lora-base") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.lora_base = argv[i]; | |
return true; | |
} | |
if (arg == "--control-vector") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.control_vectors.push_back({ 1.0f, argv[i], }); | |
return true; | |
} | |
if (arg == "--control-vector-scaled") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
const char* fname = argv[i]; | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.control_vectors.push_back({ std::stof(argv[i]), fname, }); | |
return true; | |
} | |
if (arg == "--control-vector-layer-range") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.control_vector_layer_start = std::stoi(argv[i]); | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.control_vector_layer_end = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--mmproj") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.mmproj = argv[i]; | |
return true; | |
} | |
if (arg == "--image") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.image.emplace_back(argv[i]); | |
return true; | |
} | |
if (arg == "-i" || arg == "--interactive") { | |
params.interactive = true; | |
return true; | |
} | |
if (arg == "--embedding") { | |
params.embedding = true; | |
return true; | |
} | |
if (arg == "--interactive-first") { | |
params.interactive_first = true; | |
return true; | |
} | |
if (arg == "-ins" || arg == "--instruct") { | |
params.instruct = true; | |
return true; | |
} | |
if (arg == "-cml" || arg == "--chatml") { | |
params.chatml = true; | |
return true; | |
} | |
if (arg == "--infill") { | |
params.infill = true; | |
return true; | |
} | |
if (arg == "-dkvc" || arg == "--dump-kv-cache") { | |
params.dump_kv_cache = true; | |
return true; | |
} | |
if (arg == "-nkvo" || arg == "--no-kv-offload") { | |
params.no_kv_offload = true; | |
return true; | |
} | |
if (arg == "-ctk" || arg == "--cache-type-k") { | |
params.cache_type_k = argv[++i]; | |
return true; | |
} | |
if (arg == "-ctv" || arg == "--cache-type-v") { | |
params.cache_type_v = argv[++i]; | |
return true; | |
} | |
if (arg == "--multiline-input") { | |
params.multiline_input = true; | |
return true; | |
} | |
if (arg == "--simple-io") { | |
params.simple_io = true; | |
return true; | |
} | |
if (arg == "-cb" || arg == "--cont-batching") { | |
params.cont_batching = true; | |
return true; | |
} | |
if (arg == "-fa" || arg == "--flash-attn") { | |
params.flash_attn = true; | |
return true; | |
} | |
if (arg == "--color") { | |
params.use_color = true; | |
return true; | |
} | |
if (arg == "--mlock") { | |
params.use_mlock = true; | |
return true; | |
} | |
if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_gpu_layers = std::stoi(argv[i]); | |
if (!llama_supports_gpu_offload()) { | |
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); | |
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); | |
} | |
return true; | |
} | |
if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_gpu_layers_draft = std::stoi(argv[i]); | |
if (!llama_supports_gpu_offload()) { | |
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n"); | |
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); | |
} | |
return true; | |
} | |
if (arg == "--main-gpu" || arg == "-mg") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.main_gpu = std::stoi(argv[i]); | |
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the main GPU has no effect.\n"); | |
return true; | |
} | |
if (arg == "--split-mode" || arg == "-sm") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
std::string arg_next = argv[i]; | |
if (arg_next == "none") { | |
params.split_mode = LLAMA_SPLIT_MODE_NONE; | |
} | |
else if (arg_next == "layer") { | |
params.split_mode = LLAMA_SPLIT_MODE_LAYER; | |
} | |
else if (arg_next == "row") { | |
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n"); | |
exit(1); | |
params.split_mode = LLAMA_SPLIT_MODE_ROW; | |
} | |
else { | |
invalid_param = true; | |
return true; | |
} | |
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the split mode has no effect.\n"); | |
return true; | |
} | |
if (arg == "--tensor-split" || arg == "-ts") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
std::string arg_next = argv[i]; | |
// split string by , and / | |
const std::regex regex{ R"([,/]+)" }; | |
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; | |
std::vector<std::string> split_arg{ it, {} }; | |
if (split_arg.size() >= llama_max_devices()) { | |
invalid_param = true; | |
return true; | |
} | |
for (size_t i = 0; i < llama_max_devices(); ++i) { | |
if (i < split_arg.size()) { | |
params.tensor_split[i] = std::stof(split_arg[i]); | |
} | |
else { | |
params.tensor_split[i] = 0.0f; | |
} | |
} | |
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n"); | |
return true; | |
} | |
if (arg == "--no-mmap") { | |
params.use_mmap = false; | |
return true; | |
} | |
if (arg == "--numa") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
std::string value(argv[i]); | |
/**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; } | |
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; } | |
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } | |
else { invalid_param = true; } | |
return true; | |
} | |
if (arg == "--verbose-prompt") { | |
params.verbose_prompt = true; | |
return true; | |
} | |
if (arg == "--no-display-prompt") { | |
params.display_prompt = false; | |
return true; | |
} | |
if (arg == "-r" || arg == "--reverse-prompt") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.antiprompt.emplace_back(argv[i]); | |
return true; | |
} | |
if (arg == "-ld" || arg == "--logdir") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.logdir = argv[i]; | |
if (params.logdir.back() != DIRECTORY_SEPARATOR) { | |
params.logdir += DIRECTORY_SEPARATOR; | |
} | |
return true; | |
} | |
if (arg == "-lcs" || arg == "--lookup-cache-static") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.lookup_cache_static = argv[i]; | |
return true; | |
} | |
if (arg == "-lcd" || arg == "--lookup-cache-dynamic") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.lookup_cache_dynamic = argv[i]; | |
return true; | |
} | |
if (arg == "--save-all-logits" || arg == "--kl-divergence-base") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.logits_file = argv[i]; | |
return true; | |
} | |
if (arg == "--perplexity" || arg == "--all-logits") { | |
params.logits_all = true; | |
return true; | |
} | |
if (arg == "--ppl-stride") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.ppl_stride = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "-ptc" || arg == "--print-token-count") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.n_print = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--check-tensors") { | |
params.check_tensors = true; | |
return true; | |
} | |
if (arg == "--ppl-output-type") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.ppl_output_type = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--hellaswag") { | |
params.hellaswag = true; | |
return true; | |
} | |
if (arg == "--hellaswag-tasks") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.hellaswag_tasks = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--winogrande") { | |
params.winogrande = true; | |
return true; | |
} | |
if (arg == "--winogrande-tasks") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.winogrande_tasks = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--multiple-choice") { | |
params.multiple_choice = true; | |
return true; | |
} | |
if (arg == "--multiple-choice-tasks") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.multiple_choice_tasks = std::stoi(argv[i]); | |
return true; | |
} | |
if (arg == "--kl-divergence") { | |
params.kl_divergence = true; | |
return true; | |
} | |
if (arg == "--ignore-eos") { | |
params.ignore_eos = true; | |
return true; | |
} | |
if (arg == "--penalize-nl") { | |
sparams.penalize_nl = true; | |
return true; | |
} | |
if (arg == "-l" || arg == "--logit-bias") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
std::stringstream ss(argv[i]); | |
llama_token key; | |
char sign; | |
std::string value_str; | |
try { | |
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { | |
sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); | |
} | |
else { | |
throw std::exception(); | |
} | |
} | |
catch (const std::exception&) { | |
invalid_param = true; | |
return true; | |
} | |
return true; | |
} | |
if (arg == "-h" || arg == "--help") { | |
gpt_print_usage(argc, argv, gpt_params()); | |
exit(0); | |
} | |
if (arg == "--version") { | |
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); | |
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET); | |
exit(0); | |
} | |
if (arg == "--random-prompt") { | |
params.random_prompt = true; | |
return true; | |
} | |
if (arg == "--in-prefix-bos") { | |
params.input_prefix_bos = true; | |
return true; | |
} | |
if (arg == "--in-prefix") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.input_prefix = argv[i]; | |
return true; | |
} | |
if (arg == "--in-suffix") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
params.input_suffix = argv[i]; | |
return true; | |
} | |
if (arg == "--grammar") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.grammar = argv[i]; | |
return true; | |
} | |
if (arg == "--grammar-file") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
std::ifstream file(argv[i]); | |
if (!file) { | |
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); | |
invalid_param = true; | |
return true; | |
} | |
std::copy( | |
std::istreambuf_iterator<char>(file), | |
std::istreambuf_iterator<char>(), | |
std::back_inserter(sparams.grammar) | |
); | |
return true; | |
} | |
if (arg == "-j" || arg == "--json-schema") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
sparams.grammar = json_schema_to_grammar(json::parse(argv[i])); | |
return true; | |
} | |
if (arg == "--override-kv") { | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
if (!parse_kv_override(argv[i], params.kv_overrides)) { | |
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]); | |
invalid_param = true; | |
return true; | |
} | |
return true; | |
} | |
// Parse args for logging parameters | |
if (log_param_single_parse(argv[i])) { | |
// Do nothing, log_param_single_parse automatically does it's thing | |
// and returns if a match was found and parsed. | |
return true; | |
} | |
if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) { | |
// We have a matching known parameter requiring an argument, | |
// now we need to check if there is anything after this argv | |
// and flag invalid_param or parse it. | |
if (++i >= argc) { | |
invalid_param = true; | |
return true; | |
} | |
if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) { | |
invalid_param = true; | |
return true; | |
} | |
return true; | |
} | |
// End of Parse args for logging parameters | |
return false; | |
} | |
void gpt_params_handle_model_default(gpt_params & params) { | |
if (!params.hf_repo.empty()) { | |
// short-hand to avoid specifying --hf-file -> default it to --model | |
if (params.hf_file.empty()) { | |
if (params.model.empty()) { | |
throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n"); | |
} | |
params.hf_file = params.model; | |
} else if (params.model.empty()) { | |
params.model = "models/" + string_split(params.hf_file, '/').back(); | |
} | |
} else if (!params.model_url.empty()) { | |
if (params.model.empty()) { | |
auto f = string_split(params.model_url, '#').front(); | |
f = string_split(f, '?').front(); | |
f = string_split(f, '/').back(); | |
params.model = "models/" + f; | |
} | |
} else if (params.model.empty()) { | |
params.model = DEFAULT_MODEL_PATH; | |
} | |
} | |
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { | |
bool invalid_param = false; | |
std::string arg; | |
const std::string arg_prefix = "--"; | |
llama_sampling_params & sparams = params.sparams; | |
for (int i = 1; i < argc; i++) { | |
arg = argv[i]; | |
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { | |
std::replace(arg.begin(), arg.end(), '_', '-'); | |
} | |
if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) { | |
throw std::invalid_argument("error: unknown argument: " + arg); | |
} | |
} | |
if (invalid_param) { | |
throw std::invalid_argument("error: invalid parameter for argument: " + arg); | |
} | |
if (params.prompt_cache_all && | |
(params.interactive || params.interactive_first || | |
params.instruct)) { | |
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); | |
} | |
gpt_params_handle_model_default(params); | |
if (params.escape) { | |
process_escapes(params.prompt); | |
process_escapes(params.input_prefix); | |
process_escapes(params.input_suffix); | |
process_escapes(sparams.cfg_negative_prompt); | |
for (auto & antiprompt : params.antiprompt) { | |
process_escapes(antiprompt); | |
} | |
} | |
if (!params.kv_overrides.empty()) { | |
params.kv_overrides.emplace_back(); | |
params.kv_overrides.back().key[0] = 0; | |
} | |
return true; | |
} | |
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { | |
const llama_sampling_params & sparams = params.sparams; | |
std::string sampler_type_chars; | |
std::string sampler_type_names; | |
for (const auto sampler_type : sparams.samplers_sequence) { | |
sampler_type_chars += static_cast<char>(sampler_type); | |
sampler_type_names += sampler_type_to_name_string(sampler_type) + ";"; | |
} | |
sampler_type_names.pop_back(); | |
printf("\n"); | |
printf("usage: %s [options]\n", argv[0]); | |
printf("\n"); | |
printf("options:\n"); | |
printf(" -h, --help show this help message and exit\n"); | |
printf(" --version show version and build info\n"); | |
printf(" -i, --interactive run in interactive mode\n"); | |
printf(" --interactive-first run in interactive mode and wait for input right away\n"); | |
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n"); | |
printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n"); | |
printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n"); | |
printf(" -r PROMPT, --reverse-prompt PROMPT\n"); | |
printf(" halt generation at PROMPT, return control in interactive mode\n"); | |
printf(" (can be specified more than once for multiple prompts).\n"); | |
printf(" --color colorise output to distinguish prompt and user input from generations\n"); | |
printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n"); | |
printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads); | |
printf(" -tb N, --threads-batch N\n"); | |
printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n"); | |
printf(" -td N, --threads-draft N"); | |
printf(" number of threads to use during generation (default: same as --threads)\n"); | |
printf(" -tbd N, --threads-batch-draft N\n"); | |
printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n"); | |
printf(" -p PROMPT, --prompt PROMPT\n"); | |
printf(" prompt to start generation with (default: empty)\n"); | |
printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); | |
printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n"); | |
printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n"); | |
printf(" not supported with --interactive or other interactive options\n"); | |
printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n"); | |
printf(" --random-prompt start with a randomized prompt.\n"); | |
printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n"); | |
printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n"); | |
printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n"); | |
printf(" -f FNAME, --file FNAME\n"); | |
printf(" prompt file to start generation.\n"); | |
printf(" -bf FNAME, --binary-file FNAME\n"); | |
printf(" binary file containing multiple choice tasks.\n"); | |
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); | |
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx); | |
printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch); | |
printf(" -ub N, --ubatch-size N\n"); | |
printf(" physical maximum batch size (default: %d)\n", params.n_ubatch); | |
printf(" --samplers samplers that will be used for generation in the order, separated by \';\'\n"); | |
printf(" (default: %s)\n", sampler_type_names.c_str()); | |
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str()); | |
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k); | |
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p); | |
printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p); | |
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z); | |
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p); | |
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n); | |
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat); | |
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present); | |
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq); | |
printf(" --dynatemp-range N dynamic temperature range (default: %.1f, 0.0 = disabled)\n", (double)sparams.dynatemp_range); | |
printf(" --dynatemp-exp N dynamic temperature exponent (default: %.1f)\n", (double)sparams.dynatemp_exponent); | |
printf(" --mirostat N use Mirostat sampling.\n"); | |
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"); | |
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat); | |
printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta); | |
printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau); | |
printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n"); | |
printf(" modifies the likelihood of token appearing in the completion,\n"); | |
printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"); | |
printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n"); | |
printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n"); | |
printf(" --grammar-file FNAME file to read grammar from\n"); | |
printf(" -j SCHEMA, --json-schema SCHEMA\n"); | |
printf(" JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object.\n"); | |
printf(" For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead\n"); | |
printf(" --cfg-negative-prompt PROMPT\n"); | |
printf(" negative prompt to use for guidance. (default: empty)\n"); | |
printf(" --cfg-negative-prompt-file FNAME\n"); | |
printf(" negative prompt file to use for guidance. (default: empty)\n"); | |
printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale); | |
printf(" --rope-scaling {none,linear,yarn}\n"); | |
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n"); | |
printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n"); | |
printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n"); | |
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n"); | |
printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n"); | |
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n"); | |
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n"); | |
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow); | |
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast); | |
printf(" --pooling {none,mean,cls}\n"); | |
printf(" pooling type for embeddings, use model default if unspecified\n"); | |
printf(" -dt N, --defrag-thold N\n"); | |
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold); | |
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n"); | |
printf(" --penalize-nl penalize newline tokens\n"); | |
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp); | |
printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n"); | |
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); | |
printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); | |
printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n"); | |
printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks); | |
printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n"); | |
printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks); | |
printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base\n"); | |
printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep); | |
printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft); | |
printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); | |
printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel); | |
printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences); | |
printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split); | |
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); | |
printf(" -fa, --flash-attn enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled"); | |
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n"); | |
printf(" --image IMAGE_FILE path to an image file. use with multimodal models. Specify multiple times for batching\n"); | |
if (llama_supports_mlock()) { | |
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); | |
} | |
if (llama_supports_mmap()) { | |
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); | |
} | |
printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n"); | |
printf(" - distribute: spread execution evenly over all nodes\n"); | |
printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n"); | |
printf(" - numactl: use the CPU map provided by numactl\n"); | |
printf(" if run without this previously, it is recommended to drop the system page cache before using this\n"); | |
printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n"); | |
if (llama_supports_gpu_offload()) { | |
printf(" -ngl N, --n-gpu-layers N\n"); | |
printf(" number of layers to store in VRAM\n"); | |
printf(" -ngld N, --n-gpu-layers-draft N\n"); | |
printf(" number of layers to store in VRAM for the draft model\n"); | |
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n"); | |
printf(" how to split the model across multiple GPUs, one of:\n"); | |
printf(" - none: use one GPU only\n"); | |
printf(" - layer (default): split layers and KV across GPUs\n"); | |
printf(" - row: split rows across GPUs\n"); | |
printf(" -ts SPLIT, --tensor-split SPLIT\n"); | |
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n"); | |
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n"); | |
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu); | |
} | |
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false"); | |
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false"); | |
printf(" -gan N, --grp-attn-n N\n"); | |
printf(" group-attention factor (default: %d)\n", params.grp_attn_n); | |
printf(" -gaw N, --grp-attn-w N\n"); | |
printf(" group-attention width (default: %.1f)\n", (double)params.grp_attn_w); | |
printf(" -dkvc, --dump-kv-cache\n"); | |
printf(" verbose print of the KV cache\n"); | |
printf(" -nkvo, --no-kv-offload\n"); | |
printf(" disable KV offload\n"); | |
printf(" -ctk TYPE, --cache-type-k TYPE\n"); | |
printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str()); | |
printf(" -ctv TYPE, --cache-type-v TYPE\n"); | |
printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str()); | |
printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n"); | |
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); | |
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n"); | |
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); | |
printf(" --control-vector FNAME\n"); | |
printf(" add a control vector\n"); | |
printf(" --control-vector-scaled FNAME S\n"); | |
printf(" add a control vector with user defined scaling S\n"); | |
printf(" --control-vector-layer-range START END\n"); | |
printf(" layer range to apply the control vector(s) to, start and end inclusive\n"); | |
printf(" -m FNAME, --model FNAME\n"); | |
printf(" model path (default: models/$filename with filename from --hf-file or --model-url if set, otherwise %s)\n", DEFAULT_MODEL_PATH); | |
printf(" -md FNAME, --model-draft FNAME\n"); | |
printf(" draft model for speculative decoding (default: unused)\n"); | |
printf(" -mu MODEL_URL, --model-url MODEL_URL\n"); | |
printf(" model download url (default: unused)\n"); | |
printf(" -hfr REPO, --hf-repo REPO\n"); | |
printf(" Hugging Face model repository (default: unused)\n"); | |
printf(" -hff FILE, --hf-file FILE\n"); | |
printf(" Hugging Face model file (default: unused)\n"); | |
printf(" -ld LOGDIR, --logdir LOGDIR\n"); | |
printf(" path under which to save YAML logs (no logging if unset)\n"); | |
printf(" -lcs FNAME, --lookup-cache-static FNAME\n"); | |
printf(" path to static lookup cache to use for lookup decoding (not updated by generation)\n"); | |
printf(" -lcd FNAME, --lookup-cache-dynamic FNAME\n"); | |
printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n"); | |
printf(" --override-kv KEY=TYPE:VALUE\n"); | |
printf(" advanced option to override model metadata by key. may be specified multiple times.\n"); | |
printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); | |
printf(" -ptc N, --print-token-count N\n"); | |
printf(" print token count every N tokens (default: %d)\n", params.n_print); | |
printf(" --check-tensors check model tensor data for invalid values\n"); | |
printf("\n"); | |
log_print_usage(); | |
} | |
std::string get_system_info(const gpt_params & params) { | |
std::ostringstream os; | |
os << "system_info: n_threads = " << params.n_threads; | |
if (params.n_threads_batch != -1) { | |
os << " (n_threads_batch = " << params.n_threads_batch << ")"; | |
} | |
os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info(); | |
return os.str(); | |
} | |
std::string gpt_random_prompt(std::mt19937 & rng) { | |
const int r = rng() % 10; | |
switch (r) { | |
case 0: return "So"; | |
case 1: return "Once upon a time"; | |
case 2: return "When"; | |
case 3: return "The"; | |
case 4: return "After"; | |
case 5: return "If"; | |
case 6: return "import"; | |
case 7: return "He"; | |
case 8: return "She"; | |
case 9: return "They"; | |
} | |
GGML_UNREACHABLE(); | |
} | |
// Validate if a filename is safe to use | |
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function | |
bool validate_file_name(const std::string & filename) { | |
if (!filename.length()) { | |
// Empty filename invalid | |
return false; | |
} | |
if (filename.length() > 255) { | |
// Limit at common largest possible filename on Linux filesystems | |
// to avoid unnecessary further validation | |
// (On systems with smaller limits it will be caught by the OS) | |
return false; | |
} | |
std::u32string filename_utf32; | |
try { | |
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter; | |
filename_utf32 = converter.from_bytes(filename); | |
// If the reverse conversion mismatches, it means overlong UTF-8 sequences were used, | |
// or invalid encodings were encountered. Reject such attempts | |
std::string filename_reencoded = converter.to_bytes(filename_utf32); | |
if (filename_reencoded != filename) { | |
return false; | |
} | |
} catch (const std::exception &) { | |
return false; | |
} | |
// Check for forbidden codepoints: | |
// - Control characters | |
// - Unicode equivalents of illegal characters | |
// - UTF-16 surrogate pairs | |
// - UTF-8 replacement character | |
// - Byte order mark (BOM) | |
// - Illegal characters: / \ : * ? " < > | | |
for (char32_t c : filename_utf32) { | |
if (c <= 0x1F // Control characters (C0) | |
|| c == 0x7F // Control characters (DEL) | |
|| (c >= 0x80 && c <= 0x9F) // Control characters (C1) | |
|| c == 0xFF0E // Fullwidth Full Stop (period equivalent) | |
|| c == 0x2215 // Division Slash (forward slash equivalent) | |
|| c == 0x2216 // Set Minus (backslash equivalent) | |
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs | |
|| c == 0xFFFD // Replacement Character (UTF-8) | |
|| c == 0xFEFF // Byte Order Mark (BOM) | |
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters | |
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') { | |
return false; | |
} | |
} | |
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename | |
// Unicode and other whitespace is not affected, only 0x20 space | |
if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') { | |
return false; | |
} | |
// Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead) | |
if (filename.find("..") != std::string::npos) { | |
return false; | |
} | |
// Reject "." | |
if (filename == ".") { | |
return false; | |
} | |
return true; | |
} | |
// | |
// String utils | |
// | |
std::vector<std::string> string_split(std::string input, char separator) { | |
std::vector<std::string> parts; | |
size_t separator_pos = input.find(separator); | |
while (separator_pos != std::string::npos) { | |
std::string part = input.substr(0, separator_pos); | |
parts.emplace_back(part); | |
input = input.substr(separator_pos + 1); | |
separator_pos = input.find(separator); | |
} | |
parts.emplace_back(input); | |
return parts; | |
} | |
std::string string_strip(const std::string & str) { | |
size_t start = 0; | |
size_t end = str.size(); | |
while (start < end && std::isspace(str[start])) { | |
start++; | |
} | |
while (end > start && std::isspace(str[end - 1])) { | |
end--; | |
} | |
return str.substr(start, end - start); | |
} | |
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) { | |
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map { | |
{"top_k", llama_sampler_type::TOP_K}, | |
{"top_p", llama_sampler_type::TOP_P}, | |
{"typical_p", llama_sampler_type::TYPICAL_P}, | |
{"min_p", llama_sampler_type::MIN_P}, | |
{"tfs_z", llama_sampler_type::TFS_Z}, | |
{"temperature", llama_sampler_type::TEMPERATURE} | |
}; | |
// since samplers names are written multiple ways | |
// make it ready for both system names and input names | |
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map { | |
{"top-k", llama_sampler_type::TOP_K}, | |
{"top-p", llama_sampler_type::TOP_P}, | |
{"nucleus", llama_sampler_type::TOP_P}, | |
{"typical-p", llama_sampler_type::TYPICAL_P}, | |
{"typical", llama_sampler_type::TYPICAL_P}, | |
{"min-p", llama_sampler_type::MIN_P}, | |
{"tfs-z", llama_sampler_type::TFS_Z}, | |
{"tfs", llama_sampler_type::TFS_Z}, | |
{"temp", llama_sampler_type::TEMPERATURE} | |
}; | |
std::vector<llama_sampler_type> sampler_types; | |
sampler_types.reserve(names.size()); | |
for (const auto & name : names) | |
{ | |
auto sampler_item = sampler_canonical_name_map.find(name); | |
if (sampler_item != sampler_canonical_name_map.end()) | |
{ | |
sampler_types.push_back(sampler_item->second); | |
} | |
else | |
{ | |
if (allow_alt_names) | |
{ | |
sampler_item = sampler_alt_name_map.find(name); | |
if (sampler_item != sampler_alt_name_map.end()) | |
{ | |
sampler_types.push_back(sampler_item->second); | |
} | |
} | |
} | |
} | |
return sampler_types; | |
} | |
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string) { | |
std::unordered_map<char, llama_sampler_type> sampler_name_map { | |
{'k', llama_sampler_type::TOP_K}, | |
{'p', llama_sampler_type::TOP_P}, | |
{'y', llama_sampler_type::TYPICAL_P}, | |
{'m', llama_sampler_type::MIN_P}, | |
{'f', llama_sampler_type::TFS_Z}, | |
{'t', llama_sampler_type::TEMPERATURE} | |
}; | |
std::vector<llama_sampler_type> sampler_types; | |
sampler_types.reserve(names_string.size()); | |
for (const auto & c : names_string) { | |
const auto sampler_item = sampler_name_map.find(c); | |
if (sampler_item != sampler_name_map.end()) { | |
sampler_types.push_back(sampler_item->second); | |
} | |
} | |
return sampler_types; | |
} | |
std::string sampler_type_to_name_string(llama_sampler_type sampler_type) { | |
switch (sampler_type) { | |
case llama_sampler_type::TOP_K: return "top_k"; | |
case llama_sampler_type::TFS_Z: return "tfs_z"; | |
case llama_sampler_type::TYPICAL_P: return "typical_p"; | |
case llama_sampler_type::TOP_P: return "top_p"; | |
case llama_sampler_type::MIN_P: return "min_p"; | |
case llama_sampler_type::TEMPERATURE: return "temperature"; | |
default : return ""; | |
} | |
} | |
// | |
// Model utils | |
// | |
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) { | |
auto mparams = llama_model_default_params(); | |
if (params.n_gpu_layers != -1) { | |
mparams.n_gpu_layers = params.n_gpu_layers; | |
} | |
mparams.main_gpu = params.main_gpu; | |
mparams.split_mode = params.split_mode; | |
mparams.tensor_split = params.tensor_split; | |
mparams.use_mmap = params.use_mmap; | |
mparams.use_mlock = params.use_mlock; | |
mparams.check_tensors = params.check_tensors; | |
if (params.kv_overrides.empty()) { | |
mparams.kv_overrides = NULL; | |
} else { | |
GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key"); | |
mparams.kv_overrides = params.kv_overrides.data(); | |
} | |
return mparams; | |
} | |
static ggml_type kv_cache_type_from_str(const std::string & s) { | |
if (s == "f32") { | |
return GGML_TYPE_F32; | |
} | |
if (s == "f16") { | |
return GGML_TYPE_F16; | |
} | |
if (s == "q8_0") { | |
return GGML_TYPE_Q8_0; | |
} | |
if (s == "q4_0") { | |
return GGML_TYPE_Q4_0; | |
} | |
if (s == "q4_1") { | |
return GGML_TYPE_Q4_1; | |
} | |
if (s == "iq4_nl") { | |
return GGML_TYPE_IQ4_NL; | |
} | |
if (s == "q5_0") { | |
return GGML_TYPE_Q5_0; | |
} | |
if (s == "q5_1") { | |
return GGML_TYPE_Q5_1; | |
} | |
throw std::runtime_error("Invalid cache type: " + s); | |
} | |
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) { | |
auto cparams = llama_context_default_params(); | |
cparams.n_ctx = params.n_ctx; | |
cparams.n_seq_max = params.n_parallel; | |
cparams.n_batch = params.n_batch; | |
cparams.n_ubatch = params.n_ubatch; | |
cparams.n_threads = params.n_threads; | |
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; | |
cparams.seed = params.seed; | |
cparams.logits_all = params.logits_all; | |
cparams.embeddings = params.embedding; | |
cparams.rope_scaling_type = params.rope_scaling_type; | |
cparams.rope_freq_base = params.rope_freq_base; | |
cparams.rope_freq_scale = params.rope_freq_scale; | |
cparams.yarn_ext_factor = params.yarn_ext_factor; | |
cparams.yarn_attn_factor = params.yarn_attn_factor; | |
cparams.yarn_beta_fast = params.yarn_beta_fast; | |
cparams.yarn_beta_slow = params.yarn_beta_slow; | |
cparams.yarn_orig_ctx = params.yarn_orig_ctx; | |
cparams.pooling_type = params.pooling_type; | |
cparams.defrag_thold = params.defrag_thold; | |
cparams.cb_eval = params.cb_eval; | |
cparams.cb_eval_user_data = params.cb_eval_user_data; | |
cparams.offload_kqv = !params.no_kv_offload; | |
cparams.flash_attn = params.flash_attn; | |
cparams.type_k = kv_cache_type_from_str(params.cache_type_k); | |
cparams.type_v = kv_cache_type_from_str(params.cache_type_v); | |
return cparams; | |
} | |
void llama_batch_clear(struct llama_batch & batch) { | |
batch.n_tokens = 0; | |
} | |
void llama_batch_add( | |
struct llama_batch & batch, | |
llama_token id, | |
llama_pos pos, | |
const std::vector<llama_seq_id> & seq_ids, | |
bool logits) { | |
batch.token [batch.n_tokens] = id; | |
batch.pos [batch.n_tokens] = pos; | |
batch.n_seq_id[batch.n_tokens] = seq_ids.size(); | |
for (size_t i = 0; i < seq_ids.size(); ++i) { | |
batch.seq_id[batch.n_tokens][i] = seq_ids[i]; | |
} | |
batch.logits [batch.n_tokens] = logits; | |
batch.n_tokens++; | |
} | |
static bool starts_with(const std::string & str, const std::string & prefix) { | |
// While we wait for C++20's std::string::starts_with... | |
return str.rfind(prefix, 0) == 0; | |
} | |
static bool llama_download_file(const std::string & url, const std::string & path) { | |
// Initialize libcurl | |
std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup); | |
if (!curl) { | |
fprintf(stderr, "%s: error initializing libcurl\n", __func__); | |
return false; | |
} | |
bool force_download = false; | |
// Set the URL, allow to follow http redirection | |
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str()); | |
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L); | |
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of | |
// operating system. Currently implemented under MS-Windows. | |
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA); | |
// Check if the file already exists locally | |
struct stat model_file_info; | |
auto file_exists = (stat(path.c_str(), &model_file_info) == 0); | |
// If the file exists, check its JSON metadata companion file. | |
std::string metadata_path = path + ".json"; | |
nlohmann::json metadata; | |
std::string etag; | |
std::string last_modified; | |
if (file_exists) { | |
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block). | |
std::ifstream metadata_in(metadata_path); | |
if (metadata_in.good()) { | |
try { | |
metadata_in >> metadata; | |
fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str()); | |
if (metadata.contains("url") && metadata["url"].is_string()) { | |
auto previous_url = metadata["url"].get<std::string>(); | |
if (previous_url != url) { | |
fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str()); | |
return false; | |
} | |
} | |
if (metadata.contains("etag") && metadata["etag"].is_string()) { | |
etag = metadata["etag"]; | |
} | |
if (metadata.contains("lastModified") && metadata["lastModified"].is_string()) { | |
last_modified = metadata["lastModified"]; | |
} | |
} catch (const nlohmann::json::exception & e) { | |
fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what()); | |
return false; | |
} | |
} | |
} else { | |
fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str()); | |
} | |
// Send a HEAD request to retrieve the etag and last-modified headers | |
struct llama_load_model_from_url_headers { | |
std::string etag; | |
std::string last_modified; | |
}; | |
llama_load_model_from_url_headers headers; | |
{ | |
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *); | |
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t { | |
llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata; | |
static std::regex header_regex("([^:]+): (.*)\r\n"); | |
static std::regex etag_regex("ETag", std::regex_constants::icase); | |
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase); | |
std::string header(buffer, n_items); | |
std::smatch match; | |
if (std::regex_match(header, match, header_regex)) { | |
const std::string & key = match[1]; | |
const std::string & value = match[2]; | |
if (std::regex_match(key, match, etag_regex)) { | |
headers->etag = value; | |
} else if (std::regex_match(key, match, last_modified_regex)) { | |
headers->last_modified = value; | |
} | |
} | |
return n_items; | |
}; | |
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb | |
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress | |
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback)); | |
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers); | |
CURLcode res = curl_easy_perform(curl.get()); | |
if (res != CURLE_OK) { | |
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res)); | |
return false; | |
} | |
long http_code = 0; | |
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code); | |
if (http_code != 200) { | |
// HEAD not supported, we don't know if the file has changed | |
// force trigger downloading | |
force_download = true; | |
fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code); | |
} | |
} | |
bool should_download = !file_exists || force_download; | |
if (!should_download) { | |
if (!etag.empty() && etag != headers.etag) { | |
fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str()); | |
should_download = true; | |
} else if (!last_modified.empty() && last_modified != headers.last_modified) { | |
fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str()); | |
should_download = true; | |
} | |
} | |
if (should_download) { | |
std::string path_temporary = path + ".downloadInProgress"; | |
if (file_exists) { | |
fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str()); | |
if (remove(path.c_str()) != 0) { | |
fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str()); | |
return false; | |
} | |
} | |
// Set the output file | |
std::unique_ptr<FILE, decltype(&fclose)> outfile(fopen(path_temporary.c_str(), "wb"), fclose); | |
if (!outfile) { | |
fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str()); | |
return false; | |
} | |
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd); | |
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t { | |
return fwrite(data, size, nmemb, (FILE *)fd); | |
}; | |
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L); | |
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback)); | |
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get()); | |
// display download progress | |
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L); | |
// helper function to hide password in URL | |
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string { | |
std::size_t protocol_pos = url.find("://"); | |
if (protocol_pos == std::string::npos) { | |
return url; // Malformed URL | |
} | |
std::size_t at_pos = url.find('@', protocol_pos + 3); | |
if (at_pos == std::string::npos) { | |
return url; // No password in URL | |
} | |
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos); | |
}; | |
// start the download | |
fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__, | |
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str()); | |
auto res = curl_easy_perform(curl.get()); | |
if (res != CURLE_OK) { | |
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res)); | |
return false; | |
} | |
long http_code = 0; | |
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code); | |
if (http_code < 200 || http_code >= 400) { | |
fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code); | |
return false; | |
} | |
// Causes file to be closed explicitly here before we rename it. | |
outfile.reset(); | |
// Write the updated JSON metadata file. | |
metadata.update({ | |
{"url", url}, | |
{"etag", headers.etag}, | |
{"lastModified", headers.last_modified} | |
}); | |
std::ofstream(metadata_path) << metadata.dump(4); | |
fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str()); | |
if (rename(path_temporary.c_str(), path.c_str()) != 0) { | |
fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str()); | |
return false; | |
} | |
} | |
return true; | |
} | |
struct llama_model * llama_load_model_from_url( | |
const char * model_url, | |
const char * path_model, | |
const struct llama_model_params & params) { | |
// Basic validation of the model_url | |
if (!model_url || strlen(model_url) == 0) { | |
fprintf(stderr, "%s: invalid model_url\n", __func__); | |
return NULL; | |
} | |
if (!llama_download_file(model_url, path_model)) { | |
return NULL; | |
} | |
// check for additional GGUFs split to download | |
int n_split = 0; | |
{ | |
struct gguf_init_params gguf_params = { | |
/*.no_alloc = */ true, | |
/*.ctx = */ NULL, | |
}; | |
auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params); | |
if (!ctx_gguf) { | |
fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model); | |
return NULL; | |
} | |
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT); | |
if (key_n_split >= 0) { | |
n_split = gguf_get_val_u16(ctx_gguf, key_n_split); | |
} | |
gguf_free(ctx_gguf); | |
} | |
if (n_split > 1) { | |
char split_prefix[PATH_MAX] = {0}; | |
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0}; | |
// Verify the first split file format | |
// and extract split URL and PATH prefixes | |
{ | |
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) { | |
fprintf(stderr, "\n%s: unexpected model file name: %s" | |
" n_split=%d\n", __func__, path_model, n_split); | |
return NULL; | |
} | |
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) { | |
fprintf(stderr, "\n%s: unexpected model url: %s" | |
" n_split=%d\n", __func__, model_url, n_split); | |
return NULL; | |
} | |
} | |
// Prepare download in parallel | |
std::vector<std::future<bool>> futures_download; | |
for (int idx = 1; idx < n_split; idx++) { | |
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split](int download_idx) -> bool { | |
char split_path[PATH_MAX] = {0}; | |
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split); | |
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0}; | |
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split); | |
return llama_download_file(split_url, split_path); | |
}, idx)); | |
} | |
// Wait for all downloads to complete | |
for (auto & f : futures_download) { | |
if (!f.get()) { | |
return NULL; | |
} | |
} | |
} | |
return llama_load_model_from_file(path_model, params); | |
} | |
struct llama_model * llama_load_model_from_hf( | |
const char * repo, | |
const char * model, | |
const char * path_model, | |
const struct llama_model_params & params) { | |
// construct hugging face model url: | |
// | |
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf | |
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf | |
// | |
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf | |
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf | |
// | |
std::string model_url = "https://huggingface.co/"; | |
model_url += repo; | |
model_url += "/resolve/main/"; | |
model_url += model; | |
return llama_load_model_from_url(model_url.c_str(), path_model, params); | |
} | |
struct llama_model * llama_load_model_from_url( | |
const char * /*model_url*/, | |
const char * /*path_model*/, | |
const struct llama_model_params & /*params*/) { | |
fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__); | |
return nullptr; | |
} | |
struct llama_model * llama_load_model_from_hf( | |
const char * /*repo*/, | |
const char * /*model*/, | |
const char * /*path_model*/, | |
const struct llama_model_params & /*params*/) { | |
fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__); | |
return nullptr; | |
} | |
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) { | |
auto mparams = llama_model_params_from_gpt_params(params); | |
llama_model * model = nullptr; | |
if (!params.hf_repo.empty() && !params.hf_file.empty()) { | |
model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams); | |
} else if (!params.model_url.empty()) { | |
model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams); | |
} else { | |
model = llama_load_model_from_file(params.model.c_str(), mparams); | |
} | |
if (model == NULL) { | |
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); | |
return std::make_tuple(nullptr, nullptr); | |
} | |
auto cparams = llama_context_params_from_gpt_params(params); | |
llama_context * lctx = llama_new_context_with_model(model, cparams); | |
if (lctx == NULL) { | |
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); | |
llama_free_model(model); | |
return std::make_tuple(nullptr, nullptr); | |
} | |
if (!params.control_vectors.empty()) { | |
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1; | |
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model); | |
const auto cvec = llama_control_vector_load(params.control_vectors); | |
if (cvec.n_embd == -1) { | |
llama_free(lctx); | |
llama_free_model(model); | |
return std::make_tuple(nullptr, nullptr); | |
} | |
int err = llama_control_vector_apply(lctx, | |
cvec.data.data(), | |
cvec.data.size(), | |
cvec.n_embd, | |
params.control_vector_layer_start, | |
params.control_vector_layer_end); | |
if (err) { | |
llama_free(lctx); | |
llama_free_model(model); | |
return std::make_tuple(nullptr, nullptr); | |
} | |
} | |
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) { | |
const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]); | |
float lora_scale = std::get<1>(params.lora_adapter[i]); | |
int err = llama_model_apply_lora_from_file(model, | |
lora_adapter.c_str(), | |
lora_scale, | |
((i > 0) || params.lora_base.empty()) | |
? NULL | |
: params.lora_base.c_str(), | |
params.n_threads); | |
if (err != 0) { | |
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); | |
llama_free(lctx); | |
llama_free_model(model); | |
return std::make_tuple(nullptr, nullptr); | |
} | |
} | |
if (params.ignore_eos) { | |
params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY; | |
} | |
if (params.warmup) { | |
LOG("warming up the model with an empty run\n"); | |
std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), }; | |
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0)); | |
llama_kv_cache_clear(lctx); | |
llama_synchronize(lctx); | |
llama_reset_timings(lctx); | |
} | |
return std::make_tuple(model, lctx); | |
} | |
// | |
// Vocab utils | |
// | |
std::vector<llama_token> llama_tokenize( | |
const struct llama_context * ctx, | |
const std::string & text, | |
bool add_special, | |
bool parse_special) { | |
return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special); | |
} | |
std::vector<llama_token> llama_tokenize( | |
const struct llama_model * model, | |
const std::string & text, | |
bool add_special, | |
bool parse_special) { | |
// upper limit for the number of tokens | |
int n_tokens = text.length() + 2 * add_special; | |
std::vector<llama_token> result(n_tokens); | |
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); | |
if (n_tokens < 0) { | |
result.resize(-n_tokens); | |
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); | |
GGML_ASSERT(check == -n_tokens); | |
} else { | |
result.resize(n_tokens); | |
} | |
return result; | |
} | |
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) { | |
std::vector<char> result(8, 0); | |
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special); | |
if (n_tokens < 0) { | |
result.resize(-n_tokens); | |
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special); | |
GGML_ASSERT(check == -n_tokens); | |
} else { | |
result.resize(n_tokens); | |
} | |
return std::string(result.data(), result.size()); | |
} | |
std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) { | |
const llama_token bos_id = llama_token_bos(llama_get_model(ctx)); | |
std::string piece; | |
std::string result; | |
for (size_t i = 0; i < tokens.size(); ++i) { | |
piece = llama_token_to_piece(ctx, tokens[i]); | |
// remove the leading space of the first non-BOS token | |
if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') { | |
piece = piece.substr(1); | |
} | |
result += piece; | |
} | |
return result; | |
} | |
std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) { | |
std::string piece; | |
std::string result; | |
for (size_t i = 0; i < tokens.size(); ++i) { | |
piece = llama_token_to_piece(ctx, tokens[i]); | |
result += piece; | |
} | |
// NOTE: the original tokenizer decodes bytes after collecting the pieces. | |
return result; | |
} | |
bool llama_should_add_bos_token(const llama_model * model) { | |
const int add_bos = llama_add_bos_token(model); | |
return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM); | |
} | |
// | |
// YAML utils | |
// | |
// returns true if successful, false otherwise | |
bool create_directory_with_parents(const std::string & path) { | |
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter; | |
std::wstring wpath = converter.from_bytes(path); | |
// if the path already exists, check whether it's a directory | |
const DWORD attributes = GetFileAttributesW(wpath.c_str()); | |
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { | |
return true; | |
} | |
size_t pos_slash = 0; | |
// process path from front to back, procedurally creating directories | |
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) { | |
const std::wstring subpath = wpath.substr(0, pos_slash); | |
const wchar_t * test = subpath.c_str(); | |
const bool success = CreateDirectoryW(test, NULL); | |
if (!success) { | |
const DWORD error = GetLastError(); | |
// if the path already exists, ensure that it's a directory | |
if (error == ERROR_ALREADY_EXISTS) { | |
const DWORD attributes = GetFileAttributesW(subpath.c_str()); | |
if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) { | |
return false; | |
} | |
} else { | |
return false; | |
} | |
} | |
pos_slash += 1; | |
} | |
return true; | |
// if the path already exists, check whether it's a directory | |
struct stat info; | |
if (stat(path.c_str(), &info) == 0) { | |
return S_ISDIR(info.st_mode); | |
} | |
size_t pos_slash = 1; // skip leading slashes for directory creation | |
// process path from front to back, procedurally creating directories | |
while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) { | |
const std::string subpath = path.substr(0, pos_slash); | |
struct stat info; | |
// if the path already exists, ensure that it's a directory | |
if (stat(subpath.c_str(), &info) == 0) { | |
if (!S_ISDIR(info.st_mode)) { | |
return false; | |
} | |
} else { | |
// create parent directories | |
const int ret = mkdir(subpath.c_str(), 0755); | |
if (ret != 0) { | |
return false; | |
} | |
} | |
pos_slash += 1; | |
} | |
return true; | |
} | |
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) { | |
if (data.empty()) { | |
fprintf(stream, "%s:\n", prop_name); | |
return; | |
} | |
fprintf(stream, "%s: [", prop_name); | |
for (size_t i = 0; i < data.size() - 1; ++i) { | |
fprintf(stream, "%e, ", data[i]); | |
} | |
fprintf(stream, "%e]\n", data.back()); | |
} | |
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) { | |
if (data.empty()) { | |
fprintf(stream, "%s:\n", prop_name); | |
return; | |
} | |
fprintf(stream, "%s: [", prop_name); | |
for (size_t i = 0; i < data.size() - 1; ++i) { | |
fprintf(stream, "%d, ", data[i]); | |
} | |
fprintf(stream, "%d]\n", data.back()); | |
} | |
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) { | |
std::string data_str(data == NULL ? "" : data); | |
if (data_str.empty()) { | |
fprintf(stream, "%s:\n", prop_name); | |
return; | |
} | |
size_t pos_start = 0; | |
size_t pos_found = 0; | |
if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) { | |
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n"); | |
data_str = std::regex_replace(data_str, std::regex("\""), "\\\""); | |
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)"); | |
data_str = "\"" + data_str + "\""; | |
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); | |
return; | |
} | |
if (data_str.find('\n') == std::string::npos) { | |
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); | |
return; | |
} | |
fprintf(stream, "%s: |\n", prop_name); | |
while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) { | |
fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str()); | |
pos_start = pos_found + 1; | |
} | |
} | |
std::string get_sortable_timestamp() { | |
using clock = std::chrono::system_clock; | |
const clock::time_point current_time = clock::now(); | |
const time_t as_time_t = clock::to_time_t(current_time); | |
char timestamp_no_ns[100]; | |
std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t)); | |
const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>( | |
current_time.time_since_epoch() % 1000000000).count(); | |
char timestamp_ns[11]; | |
snprintf(timestamp_ns, 11, "%09" PRId64, ns); | |
return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); | |
} | |
void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx, | |
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) { | |
const llama_sampling_params & sparams = params.sparams; | |
fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT); | |
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER); | |
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); | |
fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false"); | |
fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false"); | |
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false"); | |
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false"); | |
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); | |
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); | |
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false"); | |
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false"); | |
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false"); | |
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false"); | |
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); | |
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false"); | |
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false"); | |
fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false"); | |
fprintf(stream, "debug: false\n"); | |
fprintf(stream, "debug: true\n"); | |
fprintf(stream, "model_desc: %s\n", model_desc); | |
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx))); | |
fprintf(stream, "optimize: true\n"); | |
fprintf(stream, "optimize: false\n"); | |
fprintf(stream, "time: %s\n", timestamp.c_str()); | |
fprintf(stream, "\n"); | |
fprintf(stream, "###############\n"); | |
fprintf(stream, "# User Inputs #\n"); | |
fprintf(stream, "###############\n"); | |
fprintf(stream, "\n"); | |
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str()); | |
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch); | |
dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str()); | |
fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale); | |
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks); | |
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); | |
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); | |
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); | |
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); | |
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq); | |
dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str()); | |
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n"); | |
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false"); | |
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks); | |
const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx))); | |
const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY; | |
fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false"); | |
dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str()); | |
fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false"); | |
dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str()); | |
fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false"); | |
fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false"); | |
fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false"); | |
fprintf(stream, "keep: %d # default: 0\n", params.n_keep); | |
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); | |
fprintf(stream, "logit_bias:\n"); | |
for (std::pair<llama_token, float> lb : sparams.logit_bias) { | |
if (ignore_eos && lb.first == logit_bias_eos->first) { | |
continue; | |
} | |
fprintf(stream, " %d: %f", lb.first, lb.second); | |
} | |
fprintf(stream, "lora:\n"); | |
for (std::tuple<std::string, float> la : params.lora_adapter) { | |
if (std::get<1>(la) != 1.0f) { | |
continue; | |
} | |
fprintf(stream, " - %s\n", std::get<0>(la).c_str()); | |
} | |
fprintf(stream, "lora_scaled:\n"); | |
for (std::tuple<std::string, float> la : params.lora_adapter) { | |
if (std::get<1>(la) == 1.0f) { | |
continue; | |
} | |
fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la)); | |
} | |
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); | |
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); | |
fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep); | |
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat); | |
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau); | |
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta); | |
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); | |
fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH); | |
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); | |
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); | |
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); | |
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); | |
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs); | |
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); | |
fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false"); | |
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); | |
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); | |
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present); | |
dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str()); | |
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str()); | |
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); | |
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); | |
dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens); | |
fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false"); | |
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat); | |
fprintf(stream, "reverse_prompt:\n"); | |
for (std::string ap : params.antiprompt) { | |
size_t pos = 0; | |
while ((pos = ap.find('\n', pos)) != std::string::npos) { | |
ap.replace(pos, 1, "\\n"); | |
pos += 1; | |
} | |
fprintf(stream, " - %s\n", ap.c_str()); | |
} | |
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base); | |
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale); | |
fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed); | |
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); | |
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); | |
fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false"); | |
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp); | |
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices()); | |
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector); | |
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z); | |
fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency()); | |
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k); | |
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p); | |
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p); | |
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p); | |
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); | |
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false"); | |
} | |
// | |
// KV cache utils | |
// | |
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) { | |
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+"; | |
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d", | |
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx); | |
llama_kv_cache_view_cell * c_curr = view.cells; | |
llama_seq_id * cs_curr = view.cells_sequences; | |
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) { | |
if (i % row_size == 0) { | |
printf("\n%5d: ", i); | |
} | |
int seq_count = 0; | |
for (int j = 0; j < view.n_seq_max; j++) { | |
if (cs_curr[j] >= 0) { seq_count++; } | |
} | |
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]); | |
} | |
printf("\n=== Done dumping\n"); | |
} | |
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) { | |
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; | |
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n", | |
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx); | |
std::unordered_map<llama_seq_id, size_t> seqs; | |
llama_kv_cache_view_cell * c_curr = view.cells; | |
llama_seq_id * cs_curr = view.cells_sequences; | |
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) { | |
for (int j = 0; j < view.n_seq_max; j++) { | |
if (cs_curr[j] < 0) { continue; } | |
if (seqs.find(cs_curr[j]) == seqs.end()) { | |
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; } | |
const size_t sz = seqs.size(); | |
seqs[cs_curr[j]] = sz; | |
} | |
} | |
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; } | |
} | |
printf("=== Sequence legend: "); | |
for (const auto & it : seqs) { | |
printf("%zu=%d, ", it.second, it.first); | |
} | |
printf("'+'=other sequence ids"); | |
c_curr = view.cells; | |
cs_curr = view.cells_sequences; | |
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) { | |
if (i % row_size == 0) { | |
printf("\n%5d: ", i); | |
} | |
for (int j = 0; j < view.n_seq_max; j++) { | |
if (cs_curr[j] >= 0) { | |
const auto & it = seqs.find(cs_curr[j]); | |
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+'); | |
} else { | |
putchar('.'); | |
} | |
} | |
putchar(' '); | |
} | |
printf("\n=== Done dumping\n"); | |
} | |
void llama_embd_normalize(const float * inp, float * out, int n) { | |
double sum = 0.0; | |
for (int i = 0; i < n; i++) { | |
sum += inp[i] * inp[i]; | |
} | |
sum = sqrt(sum); | |
const float norm = sum > 0.0 ? 1.0f / sum : 0.0f; | |
for (int i = 0; i < n; i++) { | |
out[i] = inp[i] * norm; | |
} | |
} | |
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){ | |
double sum = 0.0; | |
double sum1 = 0.0; | |
double sum2 = 0.0; | |
for (int i = 0; i < n; i++) { | |
sum += embd1[i] * embd2[i]; | |
sum1 += embd1[i] * embd1[i]; | |
sum2 += embd2[i] * embd2[i]; | |
} | |
return sum / (sqrt(sum1) * sqrt(sum2)); | |
} | |
// | |
// Control vector utils | |
// | |
static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) { | |
int32_t n_tensors; | |
size_t n_bytes = 0; | |
uint32_t max_direction_layer = 0; | |
llama_control_vector_data result = { -1, {} }; | |
// calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer | |
{ | |
struct ggml_init_params meta_params = { | |
/* .mem_size = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(), | |
/* .mem_buffer = */ nullptr, | |
/* .no_alloc = */ true, | |
}; | |
ggml_context * meta_ctx = ggml_init(meta_params); | |
struct gguf_init_params meta_gguf_params = { | |
/* .no_alloc = */ true, | |
/* .ctx = */ &meta_ctx, | |
}; | |
struct gguf_context * meta_ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params); | |
if (!meta_ctx_gguf) { | |
fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str()); | |
ggml_free(meta_ctx); | |
return result; | |
} | |
n_tensors = gguf_get_n_tensors(meta_ctx_gguf); | |
for (int i = 0; i < n_tensors; i++) { | |
std::string name = gguf_get_tensor_name(meta_ctx_gguf, i); | |
// split on '.' | |
size_t dotpos = name.find('.'); | |
if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") { | |
try { | |
uint32_t layer = std::stoi(name.substr(dotpos + 1)); | |
if (layer == 0) { | |
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str()); | |
ggml_free(meta_ctx); | |
gguf_free(meta_ctx_gguf); | |
return result; | |
} | |
if (layer > max_direction_layer) { | |
max_direction_layer = layer; | |
} | |
} catch (...) { | |
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str()); | |
ggml_free(meta_ctx); | |
gguf_free(meta_ctx_gguf); | |
return result; | |
} | |
} | |
struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str()); | |
if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) { | |
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str()); | |
ggml_free(meta_ctx); | |
gguf_free(meta_ctx_gguf); | |
return result; | |
} | |
if (result.n_embd == -1) { | |
result.n_embd = ggml_nelements(tensor_meta); | |
} else if (ggml_nelements(tensor_meta) != result.n_embd) { | |
fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, load_info.fname.c_str()); | |
ggml_free(meta_ctx); | |
gguf_free(meta_ctx_gguf); | |
return result; | |
} | |
n_bytes += ggml_nbytes(tensor_meta); | |
} | |
ggml_free(meta_ctx); | |
gguf_free(meta_ctx_gguf); | |
} | |
if (n_tensors == 0) { | |
fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str()); | |
return result; | |
} | |
// load and scale tensors into final control vector context | |
struct ggml_init_params ggml_params = { | |
/* .mem_size = */ ggml_tensor_overhead() * n_tensors + n_bytes, | |
/* .mem_buffer = */ nullptr, | |
/* .no_alloc = */ false, | |
}; | |
struct ggml_context * ctx = ggml_init(ggml_params); | |
struct gguf_init_params params = { | |
/*.no_alloc = */ false, | |
/*.ctx = */ &ctx, | |
}; | |
struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), params); | |
if (!ctx_gguf) { | |
fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str()); | |
ggml_free(ctx); | |
return result; | |
} | |
// do not store data for layer 0 (it's not used) | |
result.data.resize(result.n_embd * max_direction_layer); | |
for (uint32_t il = 1; il <= max_direction_layer; il++) { | |
const std::string name = "direction." + std::to_string(il); | |
const ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str()); | |
float * dst = result.data.data() + result.n_embd * (il - 1); | |
if (tensor) { | |
const float * src = (const float *) tensor->data; | |
for (int j = 0; j < result.n_embd; j++) { | |
dst[j] = src[j] * load_info.strength; | |
} | |
} else { | |
for (int j = 0; j < result.n_embd; j++) { | |
dst[j] = 0.0f; | |
} | |
} | |
} | |
return result; | |
} | |
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) { | |
llama_control_vector_data result = { -1, {} }; | |
for (const auto & info : load_infos) { | |
auto cur = llama_control_vector_load_one(info); | |
if (cur.n_embd == -1) { | |
return result; | |
} | |
if (result.n_embd != -1 && (result.n_embd != cur.n_embd || result.data.size() != cur.data.size())) { | |
fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, info.fname.c_str()); | |
return result; | |
} | |
if (result.n_embd == -1) { | |
result = std::move(cur); | |
} else { | |
for (size_t i = 0; i < cur.data.size(); i++) { | |
result.data[i] += cur.data[i]; | |
} | |
} | |
} | |
if (result.n_embd == -1) { | |
fprintf(stderr, "%s: no vectors passed\n", __func__); | |
} | |
return result; | |
} | |