Spaces:
Runtime error
Runtime error
static std::vector<std::string> split_lines(const std::string & s) { | |
std::string line; | |
std::vector<std::string> lines; | |
std::stringstream ss(s); | |
while (std::getline(ss, line)) { | |
lines.push_back(line); | |
} | |
return lines; | |
} | |
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) { | |
for (size_t i = 0; i < tokens.size(); i++) { | |
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1); | |
} | |
} | |
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) { | |
// clear previous kv_cache values (irrelevant for embeddings) | |
llama_kv_cache_clear(ctx); | |
// run model | |
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq); | |
if (llama_decode(ctx, batch) < 0) { | |
fprintf(stderr, "%s : failed to decode\n", __func__); | |
} | |
for (int i = 0; i < batch.n_tokens; i++) { | |
if (!batch.logits[i]) { | |
continue; | |
} | |
// try to get sequence embeddings - supported only when pooling_type is not NONE | |
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); | |
if (embd == NULL) { | |
embd = llama_get_embeddings_ith(ctx, i); | |
if (embd == NULL) { | |
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i); | |
continue; | |
} | |
} | |
float * out = output + batch.seq_id[i][0] * n_embd; | |
llama_embd_normalize(embd, out, n_embd); | |
} | |
} | |
int main(int argc, char ** argv) { | |
gpt_params params; | |
if (!gpt_params_parse(argc, argv, params)) { | |
return 1; | |
} | |
params.embedding = true; | |
// For non-causal models, batch size must be equal to ubatch size | |
params.n_ubatch = params.n_batch; | |
print_build_info(); | |
if (params.seed == LLAMA_DEFAULT_SEED) { | |
params.seed = time(NULL); | |
} | |
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); | |
std::mt19937 rng(params.seed); | |
if (params.random_prompt) { | |
params.prompt = gpt_random_prompt(rng); | |
} | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
llama_model * model; | |
llama_context * ctx; | |
// load the model | |
std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
if (model == NULL) { | |
fprintf(stderr, "%s: error: unable to load model\n", __func__); | |
return 1; | |
} | |
const int n_ctx_train = llama_n_ctx_train(model); | |
const int n_ctx = llama_n_ctx(ctx); | |
if (n_ctx > n_ctx_train) { | |
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", | |
__func__, n_ctx_train, n_ctx); | |
} | |
// print system information | |
{ | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "%s\n", get_system_info(params).c_str()); | |
} | |
// split the prompt into lines | |
std::vector<std::string> prompts = split_lines(params.prompt); | |
// max batch size | |
const uint64_t n_batch = params.n_batch; | |
GGML_ASSERT(params.n_batch >= params.n_ctx); | |
// tokenize the prompts and trim | |
std::vector<std::vector<int32_t>> inputs; | |
for (const auto & prompt : prompts) { | |
auto inp = ::llama_tokenize(ctx, prompt, true, false); | |
if (inp.size() > n_batch) { | |
fprintf(stderr, "%s: error: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n", | |
__func__, (long long int) inp.size(), (long long int) n_batch); | |
return 1; | |
} | |
inputs.push_back(inp); | |
} | |
// add SEP if not present | |
for (auto & inp : inputs) { | |
if (inp.empty() || inp.back() != llama_token_sep(model)) { | |
inp.push_back(llama_token_sep(model)); | |
} | |
} | |
// tokenization stats | |
if (params.verbose_prompt) { | |
for (int i = 0; i < (int) inputs.size(); i++) { | |
fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str()); | |
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size()); | |
for (int j = 0; j < (int) inputs[i].size(); j++) { | |
fprintf(stderr, "%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str()); | |
} | |
fprintf(stderr, "\n\n"); | |
} | |
} | |
// initialize batch | |
const int n_prompts = prompts.size(); | |
struct llama_batch batch = llama_batch_init(n_batch, 0, 1); | |
// allocate output | |
const int n_embd = llama_n_embd(model); | |
std::vector<float> embeddings(n_prompts * n_embd, 0); | |
float * emb = embeddings.data(); | |
// break into batches | |
int p = 0; // number of prompts processed already | |
int s = 0; // number of prompts in current batch | |
for (int k = 0; k < n_prompts; k++) { | |
// clamp to n_batch tokens | |
auto & inp = inputs[k]; | |
const uint64_t n_toks = inp.size(); | |
// encode if at capacity | |
if (batch.n_tokens + n_toks > n_batch) { | |
float * out = emb + p * n_embd; | |
batch_decode(ctx, batch, out, s, n_embd); | |
llama_batch_clear(batch); | |
p += s; | |
s = 0; | |
} | |
// add to batch | |
batch_add_seq(batch, inp, s); | |
s += 1; | |
} | |
// final batch | |
float * out = emb + p * n_embd; | |
batch_decode(ctx, batch, out, s, n_embd); | |
// print the first part of the embeddings or for a single prompt, the full embedding | |
fprintf(stdout, "\n"); | |
for (int j = 0; j < n_prompts; j++) { | |
fprintf(stdout, "embedding %d: ", j); | |
for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) { | |
fprintf(stdout, "%9.6f ", emb[j * n_embd + i]); | |
} | |
fprintf(stdout, "\n"); | |
} | |
// print cosine similarity matrix | |
if (n_prompts > 1) { | |
fprintf(stdout, "\n"); | |
printf("cosine similarity matrix:\n\n"); | |
for (int i = 0; i < n_prompts; i++) { | |
for (int j = 0; j < n_prompts; j++) { | |
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd); | |
fprintf(stdout, "%6.2f ", sim); | |
} | |
fprintf(stdout, "\n"); | |
} | |
} | |
// clean up | |
llama_print_timings(ctx); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
return 0; | |
} | |