Spaces:
Runtime error
Runtime error
struct retrieval_params { | |
std::vector<std::string> context_files; // context files to embed | |
int32_t chunk_size = 64; // chunk size for context embedding | |
std::string chunk_separator = "\n"; // chunk separator for context embedding | |
}; | |
static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) { | |
gpt_print_usage(argc, argv, gpt_params); | |
printf("retrieval options:\n"); | |
printf(" --context-file FNAME file containing context to embed.\n"); | |
printf(" specify multiple files by providing --context-file option multiple times.\n"); | |
printf(" --chunk-size N minimum length of embedded text chunk (default:%d)\n", params.chunk_size); | |
printf(" --chunk-separator STRING\n"); | |
printf(" string to separate chunks (default: \"\\n\")\n"); | |
printf("\n"); | |
} | |
static void retrieval_params_parse(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & retrieval_params) { | |
int i = 1; | |
std::string arg; | |
while (i < argc) { | |
arg = argv[i]; | |
bool invalid_gpt_param = false; | |
if(gpt_params_find_arg(argc, argv, argv[i], gpt_params, i, invalid_gpt_param)) { | |
if (invalid_gpt_param) { | |
fprintf(stderr, "error: invalid argument: %s\n", arg.c_str()); | |
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params); | |
exit(1); | |
} | |
// option was parsed by gpt_params_find_arg | |
} else if (arg == "--context-file") { | |
if (++i >= argc) { | |
fprintf(stderr, "error: missing argument for --context-file\n"); | |
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params); | |
exit(1); | |
} | |
std::ifstream file(argv[i]); | |
if (!file) { | |
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); | |
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params); | |
exit(1); | |
} | |
// store the external file name in params | |
retrieval_params.context_files.push_back(argv[i]); | |
} else if (arg == "--chunk-size") { | |
if (++i >= argc) { | |
fprintf(stderr, "error: missing argument for --chunk-size\n"); | |
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params); | |
exit(1); | |
} | |
retrieval_params.chunk_size = std::stoi(argv[i]); | |
} else if (arg == "--chunk-separator") { | |
if (++i >= argc) { | |
fprintf(stderr, "error: missing argument for --chunk-separator\n"); | |
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params); | |
exit(1); | |
} | |
retrieval_params.chunk_separator = argv[i]; | |
} else { | |
// unknown argument | |
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params); | |
exit(1); | |
} | |
i++; | |
} | |
} | |
struct chunk { | |
// filename | |
std::string filename; | |
// original file position | |
size_t filepos; | |
// original text data | |
std::string textdata = ""; | |
// tokenized text data | |
std::vector<llama_token> tokens; | |
// embedding | |
std::vector<float> embedding; | |
}; | |
// chunk file data to chunks of size >= chunk_size | |
// chunk_separator is the separator between chunks | |
static std::vector<chunk> chunk_file(const std::string & filename, int chunk_size, const std::string & chunk_separator) { | |
std::vector<chunk> chunks; | |
std::ifstream f(filename.c_str()); | |
if (!f.is_open()) { | |
fprintf(stderr, "Error: could not open file %s\n", filename.c_str()); | |
return chunks; | |
} | |
chunk current_chunk; | |
char buffer[1024]; | |
int64_t filepos = 0; | |
std::string current = ""; | |
while (f.read(buffer, 1024)) { | |
current += std::string(buffer, f.gcount()); | |
size_t pos; | |
while ((pos = current.find(chunk_separator)) != std::string::npos) { | |
current_chunk.textdata += current.substr(0, pos + chunk_separator.size()); | |
if ((int) current_chunk.textdata.size() > chunk_size) { | |
// save chunk | |
current_chunk.filepos = filepos; | |
current_chunk.filename = filename; | |
chunks.push_back(current_chunk); | |
// update filepos | |
filepos += (int) current_chunk.textdata.size(); | |
// reset current_chunk | |
current_chunk = chunk(); | |
} | |
current = current.substr(pos + chunk_separator.size()); | |
} | |
} | |
// add leftover data to last chunk | |
if (current_chunk.textdata.size() > 0) { | |
if (chunks.empty()) { | |
current_chunk.filepos = filepos; | |
current_chunk.filename = filename; | |
chunks.push_back(current_chunk); | |
} else { | |
chunks.back().textdata += current_chunk.textdata; | |
} | |
} | |
f.close(); | |
return chunks; | |
} | |
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) { | |
for (size_t i = 0; i < tokens.size(); i++) { | |
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1); | |
} | |
} | |
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) { | |
// clear previous kv_cache values (irrelevant for embeddings) | |
llama_kv_cache_clear(ctx); | |
// run model | |
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq); | |
if (llama_decode(ctx, batch) < 0) { | |
fprintf(stderr, "%s : failed to decode\n", __func__); | |
} | |
for (int i = 0; i < batch.n_tokens; i++) { | |
if (!batch.logits[i]) { | |
continue; | |
} | |
// try to get sequence embeddings - supported only when pooling_type is not NONE | |
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); | |
if (embd == NULL) { | |
embd = llama_get_embeddings_ith(ctx, i); | |
if (embd == NULL) { | |
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i); | |
continue; | |
} | |
} | |
float * out = output + batch.seq_id[i][0] * n_embd; | |
llama_embd_normalize(embd, out, n_embd); | |
} | |
} | |
int main(int argc, char ** argv) { | |
gpt_params params; | |
retrieval_params retrieval_params; | |
retrieval_params_parse(argc, argv, params, retrieval_params); | |
// For BERT models, batch size must be equal to ubatch size | |
params.n_ubatch = params.n_batch; | |
if (retrieval_params.chunk_size <= 0) { | |
fprintf(stderr, "chunk_size must be positive\n"); | |
return 1; | |
} | |
if (retrieval_params.context_files.empty()) { | |
fprintf(stderr, "context_files must be specified\n"); | |
return 1; | |
} | |
params.embedding = true; | |
print_build_info(); | |
printf("processing files:\n"); | |
for (auto & context_file : retrieval_params.context_files) { | |
printf("%s\n", context_file.c_str()); | |
} | |
std::vector<chunk> chunks; | |
for (auto & context_file : retrieval_params.context_files) { | |
std::vector<chunk> file_chunk = chunk_file(context_file, retrieval_params.chunk_size, retrieval_params.chunk_separator); | |
chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end()); | |
} | |
printf("Number of chunks: %ld\n", chunks.size()); | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
llama_model * model; | |
llama_context * ctx; | |
// load the model | |
std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
if (model == NULL) { | |
fprintf(stderr, "%s: error: unable to load model\n", __func__); | |
return 1; | |
} | |
const int n_ctx_train = llama_n_ctx_train(model); | |
const int n_ctx = llama_n_ctx(ctx); | |
if (n_ctx > n_ctx_train) { | |
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", | |
__func__, n_ctx_train, n_ctx); | |
} | |
// print system information | |
{ | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "%s\n", get_system_info(params).c_str()); | |
} | |
// max batch size | |
const uint64_t n_batch = params.n_batch; | |
GGML_ASSERT(params.n_batch >= params.n_ctx); | |
// tokenize the prompts and trim | |
for (auto & chunk : chunks) { | |
auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false); | |
if (inp.size() > n_batch) { | |
fprintf(stderr, "%s: error: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n", | |
__func__, (long long int) inp.size(), (long long int) n_batch); | |
return 1; | |
} | |
// add eos if not present | |
if (inp.empty() || inp.back() != llama_token_eos(model)) { | |
inp.push_back(llama_token_eos(model)); | |
} | |
chunk.tokens = inp; | |
} | |
// tokenization stats | |
if (params.verbose_prompt) { | |
for (int i = 0; i < (int) chunks.size(); i++) { | |
fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str()); | |
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size()); | |
for (int j = 0; j < (int) chunks[i].tokens.size(); j++) { | |
fprintf(stderr, "%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str()); | |
} | |
fprintf(stderr, "\n\n"); | |
} | |
} | |
// initialize batch | |
const int n_chunks = chunks.size(); | |
struct llama_batch batch = llama_batch_init(n_batch, 0, 1); | |
// allocate output | |
const int n_embd = llama_n_embd(model); | |
std::vector<float> embeddings(n_chunks * n_embd, 0); | |
float * emb = embeddings.data(); | |
// break into batches | |
int p = 0; // number of prompts processed already | |
int s = 0; // number of prompts in current batch | |
for (int k = 0; k < n_chunks; k++) { | |
// clamp to n_batch tokens | |
auto & inp = chunks[k].tokens; | |
const uint64_t n_toks = inp.size(); | |
// encode if at capacity | |
if (batch.n_tokens + n_toks > n_batch) { | |
float * out = emb + p * n_embd; | |
batch_decode(ctx, batch, out, s, n_embd); | |
llama_batch_clear(batch); | |
p += s; | |
s = 0; | |
} | |
// add to batch | |
batch_add_seq(batch, inp, s); | |
s += 1; | |
} | |
// final batch | |
float * out = emb + p * n_embd; | |
batch_decode(ctx, batch, out, s, n_embd); | |
// save embeddings to chunks | |
for (int i = 0; i < n_chunks; i++) { | |
chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd); | |
// clear tokens as they are no longer needed | |
chunks[i].tokens.clear(); | |
} | |
// start loop, receive query and return top k similar chunks based on cosine similarity | |
std::string query; | |
while (true) { | |
printf("Enter query: "); | |
std::getline(std::cin, query); | |
std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true); | |
struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1); | |
batch_add_seq(query_batch, query_tokens, 0); | |
std::vector<float> query_emb(n_embd, 0); | |
batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd); | |
llama_batch_clear(query_batch); | |
// compute cosine similarities | |
{ | |
std::vector<std::pair<int, float>> similarities; | |
for (int i = 0; i < n_chunks; i++) { | |
float sim = llama_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd); | |
similarities.push_back(std::make_pair(i, sim)); | |
} | |
// sort similarities | |
std::sort(similarities.begin(), similarities.end(), [](const std::pair<int, float> & a, const std::pair<int, float> & b) { | |
return a.second > b.second; | |
}); | |
printf("Top %d similar chunks:\n", params.sparams.top_k); | |
for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) { | |
printf("filename: %s\n", chunks[similarities[i].first].filename.c_str()); | |
printf("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos); | |
printf("similarity: %f\n", similarities[i].second); | |
printf("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str()); | |
printf("--------------------\n"); | |
} | |
} | |
} | |
// clean up | |
llama_print_timings(ctx); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
} | |