Spaces:
Running
Running
File size: 9,407 Bytes
8819832 2d83b8c 8819832 2d83b8c a74d72a 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 cd04e06 cec9cce 8819832 2d83b8c 8819832 2d83b8c bfea389 2d83b8c 8819832 cd04e06 2d83b8c 8819832 a74d72a 8819832 cd9dce6 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c a74d72a e556063 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c cd04e06 2d83b8c 8819832 2d83b8c cec9cce 2d83b8c cec9cce 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 2d83b8c 8819832 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import json
import uuid
import datetime
from typing import Dict, Optional, Any
from huggingface_hub import HfApi, ModelCard
from utils import calculate_completeness_score
class AIBOMGenerator:
def __init__(
self,
hf_token: Optional[str] = None,
inference_model_url: Optional[str] = None,
use_inference: bool = True,
cache_dir: Optional[str] = None,
):
self.hf_api = HfApi(token=hf_token)
self.inference_model_url = inference_model_url
self.use_inference = use_inference
self.cache_dir = cache_dir
def generate_aibom(
self,
model_id: str,
output_file: Optional[str] = None,
include_inference: Optional[bool] = None,
) -> Dict[str, Any]:
use_inference = include_inference if include_inference is not None else self.use_inference
model_info = self._fetch_model_info(model_id)
model_card = self._fetch_model_card(model_id)
aibom = self._create_aibom_structure(model_id, model_info, model_card, use_inference)
if output_file:
with open(output_file, 'w') as f:
json.dump(aibom, f, indent=2)
return aibom
def _fetch_model_info(self, model_id: str) -> Dict[str, Any]:
try:
return self.hf_api.model_info(model_id)
except Exception as e:
print(f"Error fetching model info for {model_id}: {e}")
return {}
def _fetch_model_card(self, model_id: str) -> Optional[ModelCard]:
try:
return ModelCard.load(model_id)
except Exception as e:
print(f"Error fetching model card for {model_id}: {e}")
return None
def _create_aibom_structure(
self,
model_id: str,
model_info: Dict[str, Any],
model_card: Optional[ModelCard],
use_inference: bool,
) -> Dict[str, Any]:
metadata = self._extract_structured_metadata(model_id, model_info, model_card)
if use_inference and model_card and self.inference_model_url:
unstructured_metadata = self._extract_unstructured_metadata(model_card)
metadata = {**unstructured_metadata, **metadata}
aibom = {
"bomFormat": "CycloneDX",
"specVersion": "1.6",
"serialNumber": f"urn:uuid:{str(uuid.uuid4())}",
"version": 1,
"metadata": self._create_metadata_section(model_id, metadata),
"components": [self._create_component_section(model_id, metadata)],
"dependencies": [
{
"ref": f"pkg:generic/{model_id.replace('/', '%2F')}",
"dependsOn": ["pkg:pypi/[email protected]"]
}
]
}
return aibom
def _extract_structured_metadata(
self,
model_id: str,
model_info: Dict[str, Any],
model_card: Optional[ModelCard],
) -> Dict[str, Any]:
metadata = {}
if model_info:
metadata.update({
"name": model_info.modelId.split("/")[-1] if hasattr(model_info, "modelId") else model_id.split("/")[-1],
"author": model_info.author if hasattr(model_info, "author") else None,
"tags": model_info.tags if hasattr(model_info, "tags") else [],
"pipeline_tag": model_info.pipeline_tag if hasattr(model_info, "pipeline_tag") else None,
"downloads": model_info.downloads if hasattr(model_info, "downloads") else 0,
"last_modified": model_info.lastModified if hasattr(model_info, "lastModified") else None,
"commit": model_info.sha[:7] if hasattr(model_info, "sha") and model_info.sha else None,
"commit_url": f"https://huggingface.co/{model_id}/commit/{model_info.sha}" if hasattr(model_info, "sha") and model_info.sha else None,
})
if model_card and model_card.data:
card_data = model_card.data.to_dict() if hasattr(model_card.data, "to_dict") else {}
metadata.update({
"language": card_data.get("language"),
"license": card_data.get("license"),
"library_name": card_data.get("library_name"),
"base_model": card_data.get("base_model"),
"datasets": card_data.get("datasets"),
"model_name": card_data.get("model_name"),
"tags": card_data.get("tags", metadata.get("tags", [])),
})
if hasattr(model_card.data, "eval_results") and model_card.data.eval_results:
metadata["eval_results"] = model_card.data.eval_results
metadata["ai:type"] = "Transformer"
metadata["ai:task"] = metadata.get("pipeline_tag", "Text Generation")
metadata["ai:framework"] = "PyTorch" if "transformers" in metadata.get("library_name", "") else "Unknown"
return {k: v for k, v in metadata.items() if v is not None}
def _extract_unstructured_metadata(self, model_card: ModelCard) -> Dict[str, Any]:
return {}
def _create_metadata_section(self, model_id: str, metadata: Dict[str, Any]) -> Dict[str, Any]:
aibom_stub = {"metadata": metadata} # Build stub for scoring
score_report = calculate_completeness_score(aibom_stub)
timestamp = datetime.datetime.utcnow().isoformat() + "Z"
tools = [{
"vendor": "Aetheris AI",
"name": "aibom-generator",
"version": "0.1.0"
}]
authors = []
if "author" in metadata and metadata["author"]:
authors.append({
"name": metadata["author"],
"url": f"https://huggingface.co/{metadata['author']}"
})
component = {
"type": "machine-learning-model",
"name": metadata.get("name", model_id.split("/")[-1]),
"bom-ref": f"pkg:generic/{model_id.replace('/', '%2F')}"
}
properties = []
for key, value in metadata.items():
if key not in ["name", "author", "license"] and value is not None:
if isinstance(value, (list, dict)):
value = json.dumps(value)
properties.append({"name": key, "value": str(value)})
# Add quality scoring results
properties.append({"name": "aibom:quality-score", "value": str(score_report["total_score"])})
properties.append({"name": "aibom:quality-breakdown", "value": json.dumps(score_report["section_scores"])})
properties.append({"name": "aibom:field-checklist", "value": json.dumps(score_report["field_checklist"])})
metadata_section = {
"timestamp": timestamp,
"tools": tools,
"component": component
}
if authors:
metadata_section["authors"] = authors
if properties:
metadata_section["properties"] = properties
return metadata_section
def _create_component_section(self, model_id: str, metadata: Dict[str, Any]) -> Dict[str, Any]:
component = {
"type": "machine-learning-model",
"bom-ref": f"pkg:generic/{model_id.replace('/', '%2F')}",
"name": metadata.get("name", model_id.split("/")[-1]),
"purl": f"pkg:generic/{model_id.replace('/', '%2F')}"
}
if "description" in metadata:
component["description"] = metadata["description"]
if "commit" in metadata:
component["version"] = metadata["commit"]
if "license" in metadata:
component["licenses"] = [{"license": {"id": metadata["license"]}}]
external_refs = [{
"type": "website",
"url": f"https://huggingface.co/{model_id}"
}]
if "commit_url" in metadata:
external_refs.append({
"type": "vcs",
"url": metadata["commit_url"]
})
component["externalReferences"] = external_refs
component["modelCard"] = self._create_model_card_section(metadata)
return component
def _create_model_card_section(self, metadata: Dict[str, Any]) -> Dict[str, Any]:
model_card_section = {}
model_parameters = {k: metadata[k] for k in ["base_model", "library_name", "pipeline_tag"] if k in metadata}
if model_parameters:
model_card_section["modelParameters"] = model_parameters
if "eval_results" in metadata:
model_card_section["quantitativeAnalysis"] = {"performanceMetrics": metadata["eval_results"]}
considerations = {}
for k in ["limitations", "ethical_considerations", "bias", "risks"]:
if k in metadata:
considerations[k] = metadata[k]
if considerations:
model_card_section["considerations"] = considerations
properties = []
for key, value in metadata.items():
if key not in ["name", "author", "license", "base_model", "library_name", "pipeline_tag", "eval_results", "limitations", "ethical_considerations", "bias", "risks"]:
if isinstance(value, (list, dict)):
value = json.dumps(value)
properties.append({"name": key, "value": str(value)})
if properties:
model_card_section["properties"] = properties
return model_card_section
|