File size: 5,708 Bytes
8819832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e3434
8819832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e3434
8819832
 
 
 
d1e3434
8819832
 
 
 
 
d1e3434
8819832
 
 
 
 
d1e3434
8819832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""
CLI interface for the AIBOM Generator.
"""

import argparse
import json
import os
import sys
from typing import Optional

from aibom_generator.generator import AIBOMGenerator


def parse_args():
    """Parse command line arguments."""
    parser = argparse.ArgumentParser(
        description="Generate AI Software Bill of Materials (AI SBOMs) in CycloneDX format for Hugging Face models."
    )
    
    parser.add_argument(
        "model_id",
        help="Hugging Face model ID (e.g., 'google/bert-base-uncased')"
    )
    
    parser.add_argument(
        "-o", "--output",
        help="Output file path (default: <model_id>.aibom.json)",
        default=None
    )
    
    parser.add_argument(
        "--token",
        help="Hugging Face API token for accessing private models",
        default=os.environ.get("HF_TOKEN")
    )
    
    parser.add_argument(
        "--inference-url",
        help="URL of the inference model service for metadata extraction",
        default=os.environ.get("AIBOM_INFERENCE_URL")
    )
    
    parser.add_argument(
        "--no-inference",
        help="Disable inference model for metadata extraction",
        action="store_true"
    )
    
    parser.add_argument(
        "--cache-dir",
        help="Directory to cache API responses and model cards",
        default=os.environ.get("AIBOM_CACHE_DIR", ".aibom_cache")
    )
    
    parser.add_argument(
        "--completeness-threshold",
        help="Minimum completeness score (0-100) required for the AIBOM",
        type=int,
        default=0
    )
    
    parser.add_argument(
        "--format",
        help="Output format (json or yaml)",
        choices=["json", "yaml"],
        default="json"
    )
    
    parser.add_argument(
        "--pretty",
        help="Pretty-print the output",
        action="store_true"
    )
    
    return parser.parse_args()


def main():
    """Main entry point for the CLI."""
    args = parse_args()
    
    # Determine output file if not specified
    if not args.output:
        model_name = args.model_id.replace("/", "_")
        args.output = f"{model_name}.aibom.json"
    
    # Create the generator
    generator = AIBOMGenerator(
        hf_token=args.token,
        inference_model_url=args.inference_url,
        use_inference=not args.no_inference,
        cache_dir=args.cache_dir
    )
    
    try:
        # Generate the AIBOM
        aibom = generator.generate_aibom(
            model_id=args.model_id,
            output_file=None  # We'll handle saving ourselves
        )
        
        # Calculate completeness score (placeholder for now)
        completeness_score = calculate_completeness_score(aibom)
        
        # Check if it meets the threshold
        if completeness_score < args.completeness_threshold:
            print(f"Warning: AI SBOM completeness score ({completeness_score}) is below threshold ({args.completeness_threshold})")
        
        # Save the output
        save_output(aibom, args.output, args.format, args.pretty)
        
        print(f"AI SBOM generated successfully: {args.output}")
        print(f"Completeness score: {completeness_score}/100")
        
        return 0
    
    except Exception as e:
        print(f"Error generating AI SBOM: {e}", file=sys.stderr)
        return 1


def calculate_completeness_score(aibom):
    """
    Calculate a completeness score for the AI SBOM.
    
    This is a placeholder implementation that will be replaced with a more
    sophisticated scoring algorithm based on the field mapping framework.
    """
    # TODO: Implement proper completeness scoring
    score = 0
    
    # Check required fields
    if all(field in aibom for field in ["bomFormat", "specVersion", "serialNumber", "version"]):
        score += 20
    
    # Check metadata
    if "metadata" in aibom:
        metadata = aibom["metadata"]
        if "timestamp" in metadata:
            score += 5
        if "tools" in metadata and metadata["tools"]:
            score += 5
        if "authors" in metadata and metadata["authors"]:
            score += 5
        if "component" in metadata:
            score += 5
    
    # Check components
    if "components" in aibom and aibom["components"]:
        component = aibom["components"][0]
        if "type" in component and component["type"] == "machine-learning-model":
            score += 10
        if "name" in component:
            score += 5
        if "bom-ref" in component:
            score += 5
        if "licenses" in component:
            score += 5
        if "externalReferences" in component:
            score += 5
        if "modelCard" in component:
            model_card = component["modelCard"]
            if "modelParameters" in model_card:
                score += 10
            if "quantitativeAnalysis" in model_card:
                score += 10
            if "considerations" in model_card:
                score += 10
    
    return score


def save_output(aibom, output_file, format_type, pretty):
    """Save the AIBOM to the specified output file."""
    if format_type == "json":
        with open(output_file, "w") as f:
            if pretty:
                json.dump(aibom, f, indent=2)
            else:
                json.dump(aibom, f)
    else:  # yaml
        try:
            import yaml
            with open(output_file, "w") as f:
                yaml.dump(aibom, f, default_flow_style=False)
        except ImportError:
            print("Warning: PyYAML not installed. Falling back to JSON format.")
            with open(output_file, "w") as f:
                json.dump(aibom, f, indent=2 if pretty else None)


if __name__ == "__main__":
    sys.exit(main())