File size: 27,288 Bytes
8819832
 
 
d9ffa28
8819832
c8175b6
2d83b8c
c8175b6
0900fea
8819832
 
 
 
 
 
 
 
 
b697afb
8819832
 
 
 
 
d9ffa28
b697afb
2d83b8c
8819832
 
 
 
 
b697afb
018daa2
d9ffa28
c8175b6
d9ffa28
b697afb
 
 
d9ffa28
 
 
 
 
 
 
 
 
b697afb
 
d9ffa28
 
 
 
 
 
 
 
 
 
 
 
018daa2
d9ffa28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b697afb
 
dc7f0d4
854b81e
d9ffa28
 
 
854b81e
 
d9ffa28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
854b81e
 
 
 
 
 
 
 
 
 
 
d9ffa28
854b81e
 
d9ffa28
854b81e
 
 
 
 
d9ffa28
 
854b81e
d9ffa28
 
854b81e
 
d9ffa28
854b81e
 
 
 
dc7f0d4
9f91b88
d9ffa28
 
 
2d83b8c
8819832
 
2d83b8c
8819832
 
 
2d83b8c
c8175b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8819832
 
2d83b8c
8819832
 
 
2d83b8c
8819832
 
 
018daa2
8819832
854b81e
 
 
 
 
 
 
 
8819832
 
 
 
 
 
 
2d83b8c
 
854b81e
 
2d83b8c
 
1eec007
b697afb
 
 
 
 
 
 
 
 
 
 
 
8819832
2d83b8c
8819832
 
 
 
 
 
 
2d83b8c
8819832
d9ffa28
 
 
 
 
 
 
 
 
 
 
 
 
2d83b8c
d9ffa28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d83b8c
 
 
 
b697afb
 
 
 
 
 
 
2d83b8c
475172d
2d83b8c
018daa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9ffa28
 
 
 
 
 
 
 
 
 
 
 
 
 
018daa2
d9ffa28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b697afb
854b81e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9ffa28
 
018daa2
 
2d83b8c
8819832
 
854b81e
 
 
 
 
 
 
 
 
 
1eec007
854b81e
 
 
 
 
2d83b8c
854b81e
8819832
854b81e
8819832
854b81e
8819832
2d83b8c
854b81e
8819832
854b81e
 
 
 
 
 
8819832
854b81e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d83b8c
854b81e
8819832
854b81e
 
 
 
 
 
2d83b8c
854b81e
8819832
 
 
2d83b8c
8819832
2d83b8c
8819832
 
2d83b8c
8819832
2d83b8c
8819832
854b81e
 
 
 
 
 
 
 
0c757a9
 
854b81e
0c757a9
854b81e
 
0c757a9
8819832
854b81e
8819832
854b81e
 
 
0c757a9
8819832
854b81e
 
 
b697afb
 
854b81e
 
b697afb
 
854b81e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d05fd64
854b81e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b697afb
854b81e
 
 
 
 
 
 
 
 
 
b697afb
854b81e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d05fd64
854b81e
 
 
 
 
 
 
 
 
 
 
 
 
 
b697afb
854b81e
 
 
 
 
 
 
 
 
 
b697afb
854b81e
 
 
b697afb
854b81e
 
 
b697afb
854b81e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b697afb
854b81e
c8175b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
import json
import uuid
import datetime
from typing import Dict, Optional, Any, List


from huggingface_hub import HfApi, ModelCard
from urllib.parse import urlparse
from .utils import calculate_completeness_score


class AIBOMGenerator:
    def __init__(
        self,
        hf_token: Optional[str] = None,
        inference_model_url: Optional[str] = None,
        use_inference: bool = True,
        cache_dir: Optional[str] = None,
        use_best_practices: bool = True,  # Added parameter for industry-neutral scoring
    ):
        self.hf_api = HfApi(token=hf_token)
        self.inference_model_url = inference_model_url
        self.use_inference = use_inference
        self.cache_dir = cache_dir
        self.enhancement_report = None  # Store enhancement report as instance variable
        self.use_best_practices = use_best_practices  # Store best practices flag

    def generate_aibom(
        self,
        model_id: str,
        output_file: Optional[str] = None,
        include_inference: Optional[bool] = None,
        use_best_practices: Optional[bool] = None,  # Added parameter for industry-neutral scoring
    ) -> Dict[str, Any]:
        try:
            model_id = self._normalise_model_id(model_id)
            use_inference = include_inference if include_inference is not None else self.use_inference
            # Use method parameter if provided, otherwise use instance variable
            use_best_practices = use_best_practices if use_best_practices is not None else self.use_best_practices
            
            model_info = self._fetch_model_info(model_id)
            model_card = self._fetch_model_card(model_id)
            
            # Store original metadata before any AI enhancement
            original_metadata = self._extract_structured_metadata(model_id, model_info, model_card)
            
            # Create initial AIBOM with original metadata
            original_aibom = self._create_aibom_structure(model_id, original_metadata)
            
            # Calculate initial score with industry-neutral approach if enabled
            original_score = calculate_completeness_score(original_aibom, validate=True, use_best_practices=use_best_practices)
            
            # Final metadata starts with original metadata
            final_metadata = original_metadata.copy() if original_metadata else {}
            
            # Apply AI enhancement if requested
            ai_enhanced = False
            ai_model_name = None
            
            if use_inference and self.inference_model_url:
                try:
                    # Extract additional metadata using AI
                    enhanced_metadata = self._extract_unstructured_metadata(model_card, model_id)
                    
                    # If we got enhanced metadata, merge it with original
                    if enhanced_metadata:
                        ai_enhanced = True
                        ai_model_name = "BERT-base-uncased"  # Will be replaced with actual model name
                        
                        # Merge enhanced metadata with original (enhanced takes precedence)
                        for key, value in enhanced_metadata.items():
                            if value is not None and (key not in final_metadata or not final_metadata[key]):
                                final_metadata[key] = value
                except Exception as e:
                    print(f"Error during AI enhancement: {e}")
                    # Continue with original metadata if enhancement fails
            
            # Create final AIBOM with potentially enhanced metadata
            aibom = self._create_aibom_structure(model_id, final_metadata)
            
            # Calculate final score with industry-neutral approach if enabled
            final_score = calculate_completeness_score(aibom, validate=True, use_best_practices=use_best_practices)
            
            # Ensure metadata.properties exists
            if "metadata" in aibom and "properties" not in aibom["metadata"]:
                aibom["metadata"]["properties"] = []

            # Note: Quality score information is no longer added to the AIBOM metadata
            # This was removed as requested by the user

            if output_file:
                with open(output_file, 'w') as f:
                    json.dump(aibom, f, indent=2)

            # Create enhancement report for UI display and store as instance variable
            self.enhancement_report = {
                "ai_enhanced": ai_enhanced,
                "ai_model": ai_model_name if ai_enhanced else None,
                "original_score": original_score,
                "final_score": final_score,
                "improvement": round(final_score["total_score"] - original_score["total_score"], 2) if ai_enhanced else 0
            }

            # Return only the AIBOM to maintain compatibility with existing code
            return aibom
        except Exception as e:
            print(f"Error generating AIBOM: {e}")
            # Return a minimal valid AIBOM structure in case of error
            return self._create_minimal_aibom(model_id)

    def _create_minimal_aibom(self, model_id: str) -> Dict[str, Any]:
        """Create a minimal valid AIBOM structure in case of errors"""
        return {
            "bomFormat": "CycloneDX",
            "specVersion": "1.6",
            "serialNumber": f"urn:uuid:{str(uuid.uuid4())}",
            "version": 1,
            "metadata": {
                "timestamp": datetime.datetime.utcnow().isoformat() + "Z",
                "tools": {
                    "components": [{
                        "bom-ref": "pkg:generic/@cybeats/[email protected]",
                        "type": "application",
                        "name": "aetheris-aibom-generator",
                        "version": "0.1.0",
                        "manufacturer": {
                            "name": "Aetheris AI"
                        }
                    }]
                },
                "component": {
                    "bom-ref": f"pkg:generic/{model_id.replace('/', '%2F')}@1.0",
                    "type": "application",
                    "name": model_id.split("/")[-1],
                    "description": f"AI model {model_id}",
                    "version": "1.0",
                    "purl": f"pkg:generic/{model_id.replace('/', '%2F')}@1.0",
                    "copyright": "NOASSERTION"
                }
            },
            "components": [{
                "bom-ref": f"pkg:huggingface/{model_id.replace('/', '/')}@1.0",
                "type": "machine-learning-model",
                "name": model_id.split("/")[-1],
                "version": "1.0",
                "purl": f"pkg:huggingface/{model_id.replace('/', '/')}@1.0"
            }],
            "dependencies": [{
                "ref": f"pkg:generic/{model_id.replace('/', '%2F')}@1.0",
                "dependsOn": [f"pkg:huggingface/{model_id.replace('/', '/')}@1.0"]
            }]
        }

    def get_enhancement_report(self):
        """Return the enhancement report from the last generate_aibom call"""
        return self.enhancement_report

    def _fetch_model_info(self, model_id: str) -> Dict[str, Any]:
        try:
            return self.hf_api.model_info(model_id)
        except Exception as e:
            print(f"Error fetching model info for {model_id}: {e}")
            return {}

    # ---- new helper ---------------------------------------------------------
    @staticmethod
    def _normalise_model_id(raw_id: str) -> str:
        """
        Accept either  'owner/model'  or a full URL like
        'https://huggingface.co/owner/model'.  Return 'owner/model'.
        """
        if raw_id.startswith(("http://", "https://")):
            path = urlparse(raw_id).path.lstrip("/")
            # path can contain extra segments (e.g. /commit/...), keep first two
            parts = path.split("/")
            if len(parts) >= 2:
                return "/".join(parts[:2])
            return path
        return raw_id
    # -------------------------------------------------------------------------

    def _fetch_model_card(self, model_id: str) -> Optional[ModelCard]:
        try:
            return ModelCard.load(model_id)
        except Exception as e:
            print(f"Error fetching model card for {model_id}: {e}")
            return None

    def _create_aibom_structure(
        self,
        model_id: str,
        metadata: Dict[str, Any],
    ) -> Dict[str, Any]:
        # Extract owner and model name from model_id
        parts = model_id.split("/")
        group = parts[0] if len(parts) > 1 else ""
        name = parts[1] if len(parts) > 1 else parts[0]
        
        # Get version from metadata or use default
        version = metadata.get("commit", "1.0")
        
        aibom = {
            "bomFormat": "CycloneDX",
            "specVersion": "1.6",
            "serialNumber": f"urn:uuid:{str(uuid.uuid4())}",
            "version": 1,
            "metadata": self._create_metadata_section(model_id, metadata),
            "components": [self._create_component_section(model_id, metadata)],
            "dependencies": [
                {
                    "ref": f"pkg:generic/{model_id.replace('/', '%2F')}@{version}",
                    "dependsOn": [f"pkg:huggingface/{model_id.replace('/', '/')}@{version}"]
                }
            ]
        }        
        
        # Add downloadLocation if available
        if metadata and "commit_url" in metadata:
            # Add external reference for downloadLocation
            if "externalReferences" not in aibom:
                aibom["externalReferences"] = []
            
            aibom["externalReferences"].append({
                "type": "distribution",
                "url": f"https://huggingface.co/{model_id}"
            })

        return aibom

    def _extract_structured_metadata(
        self,
        model_id: str,
        model_info: Dict[str, Any],
        model_card: Optional[ModelCard],
    ) -> Dict[str, Any]:
        metadata = {}

        if model_info:
            try:
                metadata.update({
                    "name": model_info.modelId.split("/")[-1] if hasattr(model_info, "modelId") else model_id.split("/")[-1],
                    "author": model_info.author if hasattr(model_info, "author") else None,
                    "tags": model_info.tags if hasattr(model_info, "tags") else [],
                    "pipeline_tag": model_info.pipeline_tag if hasattr(model_info, "pipeline_tag") else None,
                    "downloads": model_info.downloads if hasattr(model_info, "downloads") else 0,
                    "last_modified": model_info.lastModified if hasattr(model_info, "lastModified") else None,
                    "commit": model_info.sha[:7] if hasattr(model_info, "sha") and model_info.sha else None,
                    "commit_url": f"https://huggingface.co/{model_id}/commit/{model_info.sha}" if hasattr(model_info, "sha") and model_info.sha else None,
                })
            except Exception as e:
                print(f"Error extracting model info metadata: {e}")

        if model_card and hasattr(model_card, "data") and model_card.data:
            try:
                card_data = model_card.data.to_dict() if hasattr(model_card.data, "to_dict") else {}
                metadata.update({
                    "language": card_data.get("language"),
                    "license": card_data.get("license"),
                    "library_name": card_data.get("library_name"),
                    "base_model": card_data.get("base_model"),
                    "datasets": card_data.get("datasets"),
                    "model_name": card_data.get("model_name"),
                    "tags": card_data.get("tags", metadata.get("tags", [])),
                    "description": card_data.get("model_summary", None)
                })
                if hasattr(model_card.data, "eval_results") and model_card.data.eval_results:
                    metadata["eval_results"] = model_card.data.eval_results
            except Exception as e:
                print(f"Error extracting model card metadata: {e}")

        metadata["ai:type"] = "Transformer"
        metadata["ai:task"] = metadata.get("pipeline_tag", "Text Generation")
        metadata["ai:framework"] = "PyTorch" if "transformers" in metadata.get("library_name", "") else "Unknown"
        
        # Add fields for industry-neutral scoring (silently aligned with SPDX)
        metadata["primaryPurpose"] = metadata.get("ai:task", "Text Generation")
        metadata["suppliedBy"] = metadata.get("author", "Unknown")
        
        # Add typeOfModel field
        metadata["typeOfModel"] = metadata.get("ai:type", "Transformer")

        return {k: v for k, v in metadata.items() if v is not None}

    def _extract_unstructured_metadata(self, model_card: Optional[ModelCard], model_id: str) -> Dict[str, Any]:
        """
        Extract additional metadata from model card using BERT model.
        This is a placeholder implementation that would be replaced with actual BERT inference.
        
        In a real implementation, this would:
        1. Extract text from model card
        2. Use BERT to identify key information
        3. Structure the extracted information
        
        For now, we'll simulate this with some basic extraction logic.
        """
        enhanced_metadata = {}
        
        # In a real implementation, we would use a BERT model here
        # Since we can't install the required libraries due to space constraints,
        # we'll simulate the enhancement with a placeholder implementation
        
        if model_card and hasattr(model_card, "text") and model_card.text:
            try:
                card_text = model_card.text
                
                # Simulate BERT extraction with basic text analysis
                # In reality, this would be done with NLP models
                
                # Extract description if missing
                if card_text and "description" not in enhanced_metadata:
                    # Take first paragraph that's longer than 20 chars as description
                    paragraphs = [p.strip() for p in card_text.split('\n\n')]
                    for p in paragraphs:
                        if len(p) > 20 and not p.startswith('#'):
                            enhanced_metadata["description"] = p
                            break
                
                # Extract limitations if present
                if "limitations" not in enhanced_metadata:
                    if "## Limitations" in card_text:
                        limitations_section = card_text.split("## Limitations")[1].split("##")[0].strip()
                        if limitations_section:
                            enhanced_metadata["limitations"] = limitations_section
                
                # Extract ethical considerations if present
                if "ethical_considerations" not in enhanced_metadata:
                    for heading in ["## Ethical Considerations", "## Ethics", "## Bias"]:
                        if heading in card_text:
                            section = card_text.split(heading)[1].split("##")[0].strip()
                            if section:
                                enhanced_metadata["ethical_considerations"] = section
                                break
                
                # Extract risks if present
                if "risks" not in enhanced_metadata:
                    if "## Risks" in card_text:
                        risks_section = card_text.split("## Risks")[1].split("##")[0].strip()
                        if risks_section:
                            enhanced_metadata["risks"] = risks_section
                
                # Extract datasets if present
                if "datasets" not in enhanced_metadata:
                    datasets = []
                    if "## Dataset" in card_text or "## Datasets" in card_text:
                        dataset_section = ""
                        if "## Dataset" in card_text:
                            dataset_section = card_text.split("## Dataset")[1].split("##")[0].strip()
                        elif "## Datasets" in card_text:
                            dataset_section = card_text.split("## Datasets")[1].split("##")[0].strip()
                        
                        if dataset_section:
                            # Simple parsing to extract dataset names
                            lines = dataset_section.split("\n")
                            for line in lines:
                                if line.strip() and not line.startswith("#"):
                                    datasets.append({
                                        "type": "dataset",
                                        "name": line.strip().split()[0] if line.strip().split() else "Unknown",
                                        "description": line.strip()
                                    })
                    
                    if datasets:
                        enhanced_metadata["datasets"] = datasets
            except Exception as e:
                print(f"Error extracting unstructured metadata: {e}")
        
        return enhanced_metadata

    def _create_metadata_section(self, model_id: str, metadata: Dict[str, Any]) -> Dict[str, Any]:
        timestamp = datetime.datetime.utcnow().isoformat() + "Z"
        
        # Get version from metadata or use default
        version = metadata.get("commit", "1.0")
        
        # Create tools section with components array
        tools = {
            "components": [{
                "bom-ref": "pkg:generic/@cybeats/[email protected]",
                "type": "application",
                "name": "aetheris-aibom-generator",
                "version": "1.0",
                "manufacturer": {
                    "name": "Aetheris AI"
                }
            }]
        }

        # Create authors array
        authors = []
        if "author" in metadata and metadata["author"]:
            authors.append({
                "name": metadata["author"]
            })

        # Create component section for metadata
        component = {
            "bom-ref": f"pkg:generic/{model_id.replace('/', '%2F')}@{version}",
            "type": "application",
            "name": metadata.get("name", model_id.split("/")[-1]),
            "description": metadata.get("description", f"AI model {model_id}"),
            "version": version,
            "purl": f"pkg:generic/{model_id.replace('/', '%2F')}@{version}"
        }
        
        # Add authors to component if available
        if authors:
            component["authors"] = authors
            
        # Add publisher and supplier if author is available
        if "author" in metadata and metadata["author"]:
            component["publisher"] = metadata["author"]
            component["supplier"] = {
                "name": metadata["author"]
            }
            component["manufacturer"] = {
                "name": metadata["author"]
            }
            
        # Add copyright
        component["copyright"] = "NOASSERTION"

        # Create properties array for additional metadata
        properties = []
        for key, value in metadata.items():
            if key not in ["name", "author", "license", "description", "commit"] and value is not None:
                if isinstance(value, (list, dict)):
                    if not isinstance(value, str):
                        value = json.dumps(value)
                properties.append({"name": key, "value": str(value)})

        # Assemble metadata section
        metadata_section = {
            "timestamp": timestamp,
            "tools": tools,
            "component": component
        }

        if properties:
            metadata_section["properties"] = properties

        return metadata_section

    def _create_component_section(self, model_id: str, metadata: Dict[str, Any]) -> Dict[str, Any]:
        # Extract owner and model name from model_id
        parts = model_id.split("/")
        group = parts[0] if len(parts) > 1 else ""
        name = parts[1] if len(parts) > 1 else parts[0]
        
        # Get version from metadata or use default
        version = metadata.get("commit", "1.0")
        
        # Create PURL with version information if commit is available
        purl = f"pkg:huggingface/{model_id.replace('/', '/')}"
        if "commit" in metadata:
            purl = f"{purl}@{metadata['commit']}"
        else:
            purl = f"{purl}@{version}"
            
        component = {
            "bom-ref": f"pkg:huggingface/{model_id.replace('/', '/')}@{version}",
            "type": "machine-learning-model",
            "group": group,
            "name": name,
            "version": version,
            "purl": purl
        }

        # Add licenses if available
        if "license" in metadata:
            component["licenses"] = [{
                "license": {
                    "id": metadata["license"],
                    "url": self._get_license_url(metadata["license"])
                }
            }]

        # Add description if available
        if "description" in metadata:
            component["description"] = metadata["description"]

        # Add external references
        external_refs = [{
            "type": "website",
            "url": f"https://huggingface.co/{model_id}"
        }]
        if "commit_url" in metadata:
            external_refs.append({
                "type": "vcs",
                "url": metadata["commit_url"]
            })
        component["externalReferences"] = external_refs

        # Add authors, publisher, supplier, manufacturer
        if "author" in metadata and metadata["author"]:
            component["authors"] = [{"name": metadata["author"]}]
            component["publisher"] = metadata["author"]
            component["supplier"] = {
                "name": metadata["author"],
                "url": [f"https://huggingface.co/{metadata['author']}"]
            }
            component["manufacturer"] = {
                "name": metadata["author"],
                "url": [f"https://huggingface.co/{metadata['author']}"]
            }
            
        # Add copyright
        component["copyright"] = "NOASSERTION"

        # Add model card section
        component["modelCard"] = self._create_model_card_section(metadata)

        return component

    def _create_model_card_section(self, metadata: Dict[str, Any]) -> Dict[str, Any]:
        model_card_section = {}
        
        # Add quantitative analysis section
        if "eval_results" in metadata:
            model_card_section["quantitativeAnalysis"] = {
                "performanceMetrics": metadata["eval_results"],
                "graphics": {}  # Empty graphics object as in the example
            }
        else:
            model_card_section["quantitativeAnalysis"] = {"graphics": {}}
        
        # Add properties section
        properties = []
        for key, value in metadata.items():
            if key in ["author", "library_name", "license", "downloads", "likes", "tags", "created_at", "last_modified"]:
                properties.append({"name": key, "value": str(value)})
        
        if properties:
            model_card_section["properties"] = properties
        
        # Create model parameters section
        model_parameters = {}
        
        # Add outputs array
        model_parameters["outputs"] = [{"format": "generated-text"}]
        
        # Add task
        model_parameters["task"] = metadata.get("pipeline_tag", "text-generation")
        
        # Add architecture information
        model_parameters["architectureFamily"] = "llama" if "llama" in metadata.get("name", "").lower() else "transformer"
        model_parameters["modelArchitecture"] = f"{metadata.get('name', 'Unknown')}ForCausalLM"
        
        # Add datasets array with proper structure
        if "datasets" in metadata:
            datasets = []
            if isinstance(metadata["datasets"], list):
                for dataset in metadata["datasets"]:
                    if isinstance(dataset, str):
                        datasets.append({
                            "type": "dataset",
                            "name": dataset,
                            "description": f"Dataset used for training {metadata.get('name', 'the model')}"
                        })
                    elif isinstance(dataset, dict) and "name" in dataset:
                        # Ensure dataset has the required structure
                        dataset_entry = {
                            "type": dataset.get("type", "dataset"),
                            "name": dataset["name"],
                            "description": dataset.get("description", f"Dataset: {dataset['name']}")
                        }
                        datasets.append(dataset_entry)
            elif isinstance(metadata["datasets"], str):
                datasets.append({
                    "type": "dataset",
                    "name": metadata["datasets"],
                    "description": f"Dataset used for training {metadata.get('name', 'the model')}"
                })
                
            if datasets:
                model_parameters["datasets"] = datasets
        
        # Add inputs array
        model_parameters["inputs"] = [{"format": "text"}]
        
        # Add model parameters to model card section
        model_card_section["modelParameters"] = model_parameters
        
        # Add considerations section
        considerations = {}
        for k in ["limitations", "ethical_considerations", "bias", "risks"]:
            if k in metadata:
                considerations[k] = metadata[k]
        if considerations:
            model_card_section["considerations"] = considerations

        return model_card_section
        
    def _get_license_url(self, license_id: str) -> str:
        """Get the URL for a license based on its SPDX ID."""
        license_urls = {
            "Apache-2.0": "https://www.apache.org/licenses/LICENSE-2.0",
            "MIT": "https://opensource.org/licenses/MIT",
            "BSD-3-Clause": "https://opensource.org/licenses/BSD-3-Clause",
            "GPL-3.0": "https://www.gnu.org/licenses/gpl-3.0.en.html",
            "CC-BY-4.0": "https://creativecommons.org/licenses/by/4.0/",
            "CC-BY-SA-4.0": "https://creativecommons.org/licenses/by-sa/4.0/",
            "CC-BY-NC-4.0": "https://creativecommons.org/licenses/by-nc/4.0/",
            "CC-BY-ND-4.0": "https://creativecommons.org/licenses/by-nd/4.0/",
            "CC-BY-NC-SA-4.0": "https://creativecommons.org/licenses/by-nc-sa/4.0/",
            "CC-BY-NC-ND-4.0": "https://creativecommons.org/licenses/by-nc-nd/4.0/",
            "LGPL-3.0": "https://www.gnu.org/licenses/lgpl-3.0.en.html",
            "MPL-2.0": "https://www.mozilla.org/en-US/MPL/2.0/",
        }
        
        return license_urls.get(license_id, "https://spdx.org/licenses/")