Spaces:
Running
Running
File size: 12,587 Bytes
8819832 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
"""
Inference model integration for extracting metadata from unstructured text.
"""
import json
import logging
import re
import requests
from typing import Dict, List, Optional, Any, Union
logger = logging.getLogger(__name__)
class InferenceModelClient:
"""
Client for interacting with the inference model service to extract
metadata from unstructured text in model cards.
"""
def __init__(
self,
inference_url: str,
timeout: int = 30,
max_retries: int = 3,
):
"""
Initialize the inference model client.
Args:
inference_url: URL of the inference model service
timeout: Request timeout in seconds
max_retries: Maximum number of retries for failed requests
"""
self.inference_url = inference_url
self.timeout = timeout
self.max_retries = max_retries
def extract_metadata(
self,
model_card_text: str,
structured_metadata: Optional[Dict[str, Any]] = None,
fields: Optional[List[str]] = None,
) -> Dict[str, Any]:
"""
Extract metadata from unstructured text using the inference model.
Args:
model_card_text: The text content of the model card
structured_metadata: Optional structured metadata to provide context
fields: Optional list of specific fields to extract
Returns:
Extracted metadata as a dictionary
"""
if not self.inference_url:
logger.warning("No inference model URL provided, skipping extraction")
return {}
# Prepare the request payload
payload = {
"text": model_card_text,
"structured_metadata": structured_metadata or {},
"fields": fields or [],
}
# Make the request to the inference model
try:
response = self._make_request(payload)
return response.get("metadata", {})
except Exception as e:
logger.error(f"Error extracting metadata with inference model: {e}")
return {}
def _make_request(self, payload: Dict[str, Any]) -> Dict[str, Any]:
"""
Make a request to the inference model service.
Args:
payload: Request payload
Returns:
Response from the inference model
Raises:
Exception: If the request fails after max_retries
"""
headers = {"Content-Type": "application/json"}
for attempt in range(self.max_retries):
try:
response = requests.post(
self.inference_url,
headers=headers,
json=payload,
timeout=self.timeout,
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
logger.warning(f"Request failed (attempt {attempt+1}/{self.max_retries}): {e}")
if attempt == self.max_retries - 1:
raise
# This should never be reached due to the raise in the loop
raise Exception("Failed to make request to inference model")
class FallbackExtractor:
"""
Fallback extractor for extracting metadata using regex and heuristics
when the inference model is not available or fails.
"""
def extract_metadata(
self,
model_card_text: str,
structured_metadata: Optional[Dict[str, Any]] = None,
fields: Optional[List[str]] = None,
) -> Dict[str, Any]:
"""
Extract metadata using regex and heuristics.
Args:
model_card_text: The text content of the model card
structured_metadata: Optional structured metadata to provide context
fields: Optional list of specific fields to extract
Returns:
Extracted metadata as a dictionary
"""
metadata = {}
# Extract model parameters
metadata.update(self._extract_model_parameters(model_card_text))
# Extract limitations and ethical considerations
metadata.update(self._extract_considerations(model_card_text))
# Extract datasets
metadata.update(self._extract_datasets(model_card_text))
# Extract evaluation results
metadata.update(self._extract_evaluation_results(model_card_text))
return metadata
def _extract_model_parameters(self, text: str) -> Dict[str, Any]:
"""Extract model parameters from text."""
params = {}
# Extract model type/architecture
architecture_patterns = [
r"(?:model|architecture)(?:\s+type)?(?:\s*:\s*|\s+is\s+)([A-Za-z0-9\-]+)",
r"based\s+on\s+(?:the\s+)?([A-Za-z0-9\-]+)(?:\s+architecture)?",
]
for pattern in architecture_patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
params["architecture"] = match.group(1).strip()
break
# Extract number of parameters
param_patterns = [
r"(\d+(?:\.\d+)?)\s*(?:B|M|K)?\s*(?:billion|million|thousand)?\s*parameters",
r"parameters\s*:\s*(\d+(?:\.\d+)?)\s*(?:B|M|K)?",
]
for pattern in param_patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
params["parameters"] = match.group(1).strip()
# TODO: Normalize to a standard unit
break
return {"model_parameters": params} if params else {}
def _extract_considerations(self, text: str) -> Dict[str, Any]:
"""Extract limitations and ethical considerations from text."""
considerations = {}
# Extract limitations
limitations_section = self._extract_section(text, ["limitations", "limits", "shortcomings"])
if limitations_section:
considerations["limitations"] = limitations_section
# Extract ethical considerations
ethics_section = self._extract_section(
text, ["ethical considerations", "ethics", "bias", "fairness", "risks"]
)
if ethics_section:
considerations["ethical_considerations"] = ethics_section
return {"considerations": considerations} if considerations else {}
def _extract_datasets(self, text: str) -> Dict[str, Any]:
"""Extract dataset information from text."""
datasets = []
# Extract dataset mentions
dataset_patterns = [
r"trained\s+on\s+(?:the\s+)?([A-Za-z0-9\-\s]+)(?:\s+dataset)?",
r"dataset(?:\s*:\s*|\s+is\s+)([A-Za-z0-9\-\s]+)",
r"using\s+(?:the\s+)?([A-Za-z0-9\-\s]+)(?:\s+dataset)",
]
for pattern in dataset_patterns:
for match in re.finditer(pattern, text, re.IGNORECASE):
dataset = match.group(1).strip()
if dataset and dataset.lower() not in ["this", "these", "those"]:
datasets.append(dataset)
return {"datasets": list(set(datasets))} if datasets else {}
def _extract_evaluation_results(self, text: str) -> Dict[str, Any]:
"""Extract evaluation results from text."""
results = {}
# Extract accuracy
accuracy_match = re.search(
r"accuracy(?:\s*:\s*|\s+of\s+|\s+is\s+)(\d+(?:\.\d+)?)\s*%?",
text,
re.IGNORECASE,
)
if accuracy_match:
results["accuracy"] = float(accuracy_match.group(1))
# Extract F1 score
f1_match = re.search(
r"f1(?:\s*[\-_]?score)?(?:\s*:\s*|\s+of\s+|\s+is\s+)(\d+(?:\.\d+)?)",
text,
re.IGNORECASE,
)
if f1_match:
results["f1"] = float(f1_match.group(1))
# Extract precision
precision_match = re.search(
r"precision(?:\s*:\s*|\s+of\s+|\s+is\s+)(\d+(?:\.\d+)?)",
text,
re.IGNORECASE,
)
if precision_match:
results["precision"] = float(precision_match.group(1))
# Extract recall
recall_match = re.search(
r"recall(?:\s*:\s*|\s+of\s+|\s+is\s+)(\d+(?:\.\d+)?)",
text,
re.IGNORECASE,
)
if recall_match:
results["recall"] = float(recall_match.group(1))
return {"evaluation_results": results} if results else {}
def _extract_section(self, text: str, section_names: List[str]) -> Optional[str]:
"""
Extract a section from the text based on section names.
Args:
text: The text to extract from
section_names: Possible names for the section
Returns:
The extracted section text, or None if not found
"""
# Create pattern to match section headers
header_pattern = r"(?:^|\n)(?:#+\s*|[0-9]+\.\s*|[A-Z\s]+:\s*)(?:{})(?:\s*:)?(?:\s*\n|\s*$)".format(
"|".join(section_names)
)
# Find all section headers
headers = list(re.finditer(header_pattern, text, re.IGNORECASE))
for i, match in enumerate(headers):
start = match.end()
# Find the end of the section (next header or end of text)
if i < len(headers) - 1:
end = headers[i + 1].start()
else:
end = len(text)
# Extract the section content
section = text[start:end].strip()
if section:
return section
return None
class MetadataExtractor:
"""
Metadata extractor that combines inference model and fallback extraction.
"""
def __init__(
self,
inference_url: Optional[str] = None,
use_inference: bool = True,
):
"""
Initialize the metadata extractor.
Args:
inference_url: URL of the inference model service
use_inference: Whether to use the inference model
"""
self.use_inference = use_inference and inference_url is not None
self.inference_client = InferenceModelClient(inference_url) if self.use_inference else None
self.fallback_extractor = FallbackExtractor()
def extract_metadata(
self,
model_card_text: str,
structured_metadata: Optional[Dict[str, Any]] = None,
fields: Optional[List[str]] = None,
) -> Dict[str, Any]:
"""
Extract metadata from model card text.
Args:
model_card_text: The text content of the model card
structured_metadata: Optional structured metadata to provide context
fields: Optional list of specific fields to extract
Returns:
Extracted metadata as a dictionary
"""
metadata = {}
# Try inference model first if enabled
if self.use_inference and self.inference_client:
try:
inference_metadata = self.inference_client.extract_metadata(
model_card_text, structured_metadata, fields
)
metadata.update(inference_metadata)
except Exception as e:
logger.error(f"Inference model extraction failed: {e}")
# Use fallback extractor for missing fields or if inference failed
if not metadata or (fields and not all(field in metadata for field in fields)):
missing_fields = fields if fields else None
if fields:
missing_fields = [field for field in fields if field not in metadata]
fallback_metadata = self.fallback_extractor.extract_metadata(
model_card_text, structured_metadata, missing_fields
)
# Only update with fallback data for fields that weren't extracted by inference
for key, value in fallback_metadata.items():
if key not in metadata or not metadata[key]:
metadata[key] = value
return metadata
|