Spaces:
Runtime error
Runtime error
File size: 27,214 Bytes
90a8b51 d996555 90a8b51 6cef257 90a8b51 a16ce34 90a8b51 a1d7c25 90a8b51 518aa1f a16ce34 518aa1f 90a8b51 a16ce34 90a8b51 a1d7c25 90a8b51 0e3192c a16ce34 0e3192c 90a8b51 d996555 90a8b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
import streamlit as st
from src.data import StoreDataLoader
from src.model import Model_Load
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
from sklearn.metrics import mean_absolute_error,mean_squared_error
import numpy as np
import pandas as pd
from src.prediction import test_prediction,val_prediction,create_week_date_featues
import plotly.express as px
#----------------hide menubar and footer----------------------------------
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
#-------------------------------------------------------------
## Load model object
model_obj=Model_Load()
#--------------------------------------------------------------
@st.cache_data
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
#-----------------------------------------------------------------
## Title of Page
st.markdown("""
<div style='text-align: center; margin-top:-70px; margin-bottom: -50px;margin-left: -50px;'>
<h2 style='font-size: 20px; font-family: Courier New, monospace;
letter-spacing: 2px; text-decoration: none;'>
<img src="https://acis.affineanalytics.co.in/assets/images/logo_small.png" alt="logo" width="70" height="30">
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: none;'>
Product Demand Forecasting Dashboard
</span>
<span style='font-size: 40%;'>
<sup style='position: relative; top: 5px; color: #ed4965;'>by Affine</sup>
</span>
</h2>
</div>
""", unsafe_allow_html=True)
#---------------------------------------------------------------------------------------------------------------------
# select the model(Sidebar)
with st.sidebar:
st.markdown("""<div style='text-align: left; margin-top:-200px;margin-left:-40px;'>
<img src="https://affine.ai/wp-content/uploads/2023/05/Affine-Logo.svg" alt="logo" width="300" height="60">
</div>""", unsafe_allow_html=True)
option=st.selectbox("Select Model",['TFT','Prophet'])
#------------------------------------------------------------------------------------------------------------
# TFT
if option=='TFT':
#--------------------------------------------------------------------------------------------------------
## TFT data path and load
path='data/train.csv'
obj=StoreDataLoader(path)
train_dataset,test_dataset,training,validation,earliest_time=obj.tft_data()
print(f"TRAINING ::START DATE ::{train_dataset['date'].min()} :: END DATE ::{train_dataset['date'].max()}")
print(f"TESTING ::START DATE ::{test_dataset['date'].min()} :: END DATE ::{test_dataset['date'].max()}")
list_store=train_dataset['store'].unique()
list_items=train_dataset['item'].unique()
#---------------------------------------------------------------------------------------------------------
try:
# load the pre trained tft model
model=model_obj.store_model_load(option)
with st.sidebar:
# st.success('Model Loaded successfully', icon="✅")
# select the store id
store=st.selectbox("Select Store ID",list_store)
# select the item id
item=st.selectbox("Select Product ID",list_items)
#--------------------------------------------------------------------------------------------------------------
## prediction on testing data
testing_results=test_prediction(model,train_dataset=train_dataset,test_dataset=test_dataset
,earliest_time=earliest_time,store_id=store,item_id=item)
# find kpi
rmse=np.around(np.sqrt(mean_squared_error(testing_results['Lead_1'],testing_results['prediction'])),2)
mae=np.around(mean_absolute_error(testing_results['Lead_1'],testing_results['prediction']),2)
print(f"TEST DATA = Item ID : {item} :: MAE : {mae} :: RMSE : {rmse}")
#--------------------------------------tft future prediction-------------------------------------------
final_data=pd.concat([train_dataset,test_dataset])
consumer_data=final_data.loc[(final_data['store']==store) & (final_data['item']==item)]
consumer_data.fillna(0,inplace=True)
date_list=[]
demand_prediction=[]
for i in range(30):
# select last 150 records as an enocer + decoder data
encoder_data = consumer_data[lambda x: x.days_from_start > x.days_from_start.max() - 150]
last_data = consumer_data[lambda x: x.days_from_start == x.days_from_start.max()]
# prediction date and time
date_list.append(encoder_data.tail(1).iloc[-1,:]['date'])
# prediction for the last 30 records
test_prediction = model.predict(encoder_data,
mode="prediction",
trainer_kwargs=dict(accelerator="cpu"),
return_x=True)
# create the next day record
decoder_data = pd.concat(
[last_data.assign(date=lambda x: x.date + pd.offsets.DateOffset(i)) for i in range(1, 2)],
ignore_index=True,
)
# find the hours_from_start & days_from_start
decoder_data["hours_from_start"] = (decoder_data["date"] - earliest_time).dt.seconds / 60 / 60 + (decoder_data["date"] - earliest_time).dt.days * 24
decoder_data['hours_from_start'] = decoder_data['hours_from_start'].astype('int')
decoder_data["hours_from_start"] += encoder_data["hours_from_start"].max() + 1 - decoder_data["hours_from_start"].min()
# add time index consistent with "data"
decoder_data["days_from_start"] = (decoder_data["date"] - earliest_time).apply(lambda x:x.days)
# adding the datetime features
decoder_data=create_week_date_featues(decoder_data,'date')
# last timestep predicted record as assume next day actual demand(for more day forecasting)
decoder_data['sales']=float(test_prediction.output[0][-1])
# append this prediction into the list
demand_prediction.append(float(test_prediction.output[0][-1]))
# update prediction time idx
decoder_data['time_idx']=int(test_prediction.x['decoder_time_idx'][0][-1])
# add the next day record into the original data
consumer_data=pd.concat([consumer_data,decoder_data])
# fina lag and update
consumer_data['lag_1']=consumer_data['sales'].shift(1)
consumer_data['lag_5']=consumer_data['sales'].shift(5)
# reset the index
consumer_data=consumer_data.reset_index(drop=True)
# forecast values for the next 30 days/timesteps
d2=pd.DataFrame({"date":date_list,"prediction":demand_prediction})[['date','prediction']]
# update the store and item ids
d2['store']=store
d2['item']=item
#----------------------------TFT and Prophet model KPI----------------------------------------
with st.sidebar:
st.markdown(f"""
<style>
/* Sidebar header style */
.sidebar-header {{
padding: 1px;
background-color: #9966FF;
text-align: center;
font-size: 13px;
font-weight: bold;
color: #FFF ;
}}
</style>
<div class="sidebar-header">
Models Evalution
</div>
""",unsafe_allow_html=True)
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"TFT":[7.73,6.17],"Prophet":[7.32,6.01]}).set_index('KPI'),width=300)
# d2=pd.DataFrame({"KPI":['RMSE','MAE','RMSE','MAE'],"model":['TFT','TFT','Prophet','Prophet'],"Score":[7.73,6.17,7.32,6.01]})
# fig = px.bar(d2, x="KPI", y="Score",
# color='model', barmode='group',
# height=200,width=300,text_auto=True,)
# st.plotly_chart(fig)
#------------------------------------Prophet model KPI---------------------------------------------------------
st.markdown(f"""
<style>
/* Sidebar header style */
.sidebar-header {{
padding: 3px;
background-color:linear-gradient(45deg, #ed4965, #c05aaf);
text-align: center;
font-size: 13px;
font-weight: bold;
color: #FFF ;
}}
</style>
<div class="sidebar-header">
KPI :: {item}
</div>
""",unsafe_allow_html=True)
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"TFT":[rmse,mae]}).set_index('KPI'),width=300)
#--------------------------------------------------------------------------------------------------------------
# tabs
tab1,tab2=st.tabs(['📈Forecast Plot','🗃Forecast Table']) #tab3-'🗃Actual Table'
#------------------------------------------------Tab-1-----------------------------------------------------------
tab1.markdown("""
<div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
<h2 style='font-size: 30px; font-family: Palatino, serif;
letter-spacing: 2px; text-decoration: none;'>
📈
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: none;'>
Forecast Plot
</span>
<span style='font-size: 40%;'>
<sup style='position: relative; top: 5px; color: #ed4965;'></sup>
</span>
</h2>
</div>
""", unsafe_allow_html=True)
# change dtype on prediction column
testing_results['prediction']=testing_results['prediction'].apply(lambda x:round(x))
testing_results['date']=testing_results['date'].dt.date
d2['prediction']=d2['prediction'].apply(lambda x:round(x))
d2['date']=d2['date'].dt.date
# training_data=train_dataset.loc[(train_dataset['store']==store)&(train_dataset['item']==item)][['date','Lead_1']].iloc[-60:,:]
#---------------------------------------------forecast plot---------------------------------------------
fig = go.Figure([
# go.Scatter(x=training_data['date'],y=training_data['Lead_1'],name='Train Observed',line=dict(color='rgba(50, 205, 50, 0.7)')),
#go.Scatter(x=y_train_pred['ds'],y=y_train_pred['yhat'],name='Prophet Pred.(10 Item)',line=dict(color='blue', dash='dot')),
go.Scatter(x=testing_results['date'], y=testing_results['Lead_1'],name='Observed',line=dict(color='rgba(218, 112, 214, 0.5)')),
go.Scatter(x=testing_results['date'],y=testing_results['prediction'],name='Historical Forecast',line=dict(color='#9400D3', dash='dash')),
go.Scatter(x=d2['date'],y=d2['prediction'],name='Future Forecast',line=dict(color='Dark Orange', dash='dot'))])
fig.update_layout(
xaxis_title='Date',
yaxis_title='Order Demand',
margin=dict(l=0, r=0, t=50, b=0),
xaxis=dict(title_font=dict(size=20)),
yaxis=dict(title_font=dict(size=20)))
fig.update_layout(width=700,height=400)
tab1.plotly_chart(fig)
#----------------------------------------------Tab-2------------------------------------------------------------
tab2.markdown("""
<div style='text-align: left; margin-top:-10px;'>
<h2 style='font-size: 30px; font-family: Palatino, serif;
letter-spacing: 2px; text-decoration: none;'>
📃
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: none;'>
Forecast Table
</span>
<span style='font-size: 40%;'>
<sup style='position: relative; top: 5px; color: #ed4965;'></sup>
</span>
</h2>
</div>
""", unsafe_allow_html=True)
final_r=pd.concat([d2[['date','store','item','prediction']],testing_results[['date','store','item','prediction']]]).sort_values('date').drop_duplicates().reset_index(drop=True)
csv = convert_df(final_r)
tab2.dataframe(final_r,width=500)
tab2.download_button(
"Download",
csv,
"file.csv",
"text/csv",
key='download-csv'
)
#--------------------------------Tab-3----------------------------------------------
# tab3.markdown("""
# <div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
# <h2 style='font-size: 30px; font-family: Palatino, serif;
# letter-spacing: 2px; text-decoration: none;'>
# 📈
# <span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
# -webkit-background-clip: text;
# -webkit-text-fill-color: transparent;
# text-shadow: none;'>
# Actual Dataset
# </span>
# <span style='font-size: 40%;'>
# <sup style='position: relative; top: 5px; color: #ed4965;'></sup>
# </span>
# </h2>
# </div>
# """, unsafe_allow_html=True)
# train_a=train_dataset.loc[(train_dataset['store']==store) & (train_dataset['item']==item)][['date','store','item','sales']]
# test_a=test_dataset.loc[(test_dataset['store']==store) & (test_dataset['item']==item)][['date','store','item','sales']]
# actual_final_data=pd.concat([train_a,test_a])
# actual_final_data['date']=actual_final_data['date'].dt.date
# tab3.dataframe(actual_final_data,width=500)
except:
st.sidebar.error('Model Not Loaded successfully!',icon="🚨")
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
elif option=='Prophet':
print("prophet")
#---------------------------------------------------Data----------------------------------------------------
# Prophet data
path='data/train.csv'
obj=StoreDataLoader(path)
fb_train_data,fb_test_data,item_dummay,store_dummay=obj.fb_data()
# st.write(fb_train_data.columns)
# st.write(fb_test_data.columns)
# print(fb_test_data.columns)
print(f"TRAINING ::START DATE ::{fb_train_data['ds'].min()} :: END DATE ::{fb_train_data['ds'].max()}")
print(f"TESTING ::START DATE ::{fb_test_data['ds'].min()} :: END DATE ::{fb_test_data['ds'].max()}")
train_new=fb_train_data.drop('y',axis=1)
test_new=fb_test_data.drop('y',axis=1)
#----------------------------------------------model Load----------------------------------------------------
try:
fb_model=model_obj.store_model_load(option)
# with st.sidebar:
# st.success('Model Loaded successfully', icon="✅")
#-------------------------------------select store & item ---------------------------------------------------
list_items=item_dummay.columns
list_store=store_dummay.columns
with st.sidebar:
store=st.selectbox("Select Store",list_store)
item=st.selectbox("Select Product",list_items)
#------------------------------------------prediction---------------------------------------------------------------
test_prediction=fb_model.predict(test_new.loc[test_new[item]==1])
train_prediction=fb_model.predict(train_new.loc[train_new[item]==1])
y_true_test=fb_test_data.loc[fb_test_data[item]==1]
y_true_train=fb_train_data.loc[fb_train_data[item]==1]
y_train_pred=train_prediction[['ds','yhat']].iloc[-60:,:]
y_train_true=y_true_train[['ds','y']].iloc[-60:,:]
y_test_pred=test_prediction[['ds','yhat']]
y_test_true=y_true_test[['ds','y']]
#----------------------------------------KPI---------------------------------------------------------------
rmse=np.sqrt(mean_squared_error(y_test_true['y'],y_test_pred['yhat']))
mae=mean_absolute_error(y_test_true['y'],y_test_pred['yhat'])
#---------------------------------future prediction---------------------------------------
fb_final=pd.concat([fb_train_data,fb_test_data])
# extract the data for selected store and item
fb_consumer=fb_final.loc[(fb_final[store]==1) & (fb_final[item]==1)]
# list of dates and prediction
date_list=[]
prediction_list=[]
# predicting the next 30 days product demand
for i in range(30):
# select only date record
next_prediction=fb_consumer.tail(1).drop('y',axis=1) # drop target of last 01/01/2015 00:00:00
# predict next timestep demand
prediction=fb_model.predict(next_prediction) # pass other feature value to the model
# append date and predicted demand
date_list.append(prediction['ds'][0]) ## append the datetime of prediction
prediction_list.append(prediction['yhat'][0]) ## append the next timestep prediction
#--------------------------next timestep data simulate-------------------------------------------------------------
last_data = fb_consumer[lambda x: x.ds == x.ds.max()] # last date present in data
# next timestep
decoder_data = pd.concat(
[last_data.assign(ds=lambda x: x.ds + pd.offsets.DateOffset(i)) for i in range(1, 2)],
ignore_index=True,
)
# update next timestep datetime covariates
decoder_data=create_week_date_featues(decoder_data,'ds')
# update last day demand prediction to the here as an actual demand value(using for more future timestep prediction)
decoder_data['sales']=prediction['yhat'][0] # assume next timestep prediction as actual
# update this next record into the original data
fb_consumer=pd.concat([fb_consumer,decoder_data]) # append that next timestep data to into main data
# find shift of power usage and update into the datset
fb_consumer['lag_1']=fb_consumer['sales'].shift(1)
fb_consumer['lag_5']=fb_consumer['sales'].shift(5)
fb_consumer=fb_consumer.reset_index(drop=True) # reset_index
future_prediction=pd.DataFrame({"ds":date_list,"yhat":prediction_list})
future_prediction['store']=store
future_prediction['item']=item
with st.sidebar:
st.markdown(f"""
<style>
/* Sidebar header style */
.sidebar-header {{
padding: 1px;
background-color: #9966FF;
text-align: center;
font-size: 13px;
font-weight: bold;
color: #FFF ;
}}
</style>
<div class="sidebar-header">
Models Evalution
</div>
""",unsafe_allow_html=True)
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"TFT":[7.73,6.17],"Prophet":[7.32,6.01]}).set_index('KPI'),width=300)
st.markdown(f"""
<style>
/* Sidebar header style */
.sidebar-header {{
padding: 3px;
background-color:linear-gradient(45deg, #ed4965, #c05aaf);
text-align: center;
font-size: 13px;
font-weight: bold;
color: #FFF ;
}}
</style>
<div class="sidebar-header">
KPI :: {item}
</div>
""",unsafe_allow_html=True)
st.dataframe(pd.DataFrame({"KPI":['RMSE','MAE'],"Prophet":[rmse,mae]}).set_index('KPI'),width=300)
#---------------------------------------Tabs-----------------------------------------------------------------------
tab1,tab2=st.tabs(['📈Forecast Plot','🗃Forecast Table']) #tab3- '🗃Actual Table'
#-------------------------------------------Tab-1=Forecast plot---------------------------------------------------
tab1.markdown("""
<div style='text-align: left; margin-top:-10px;margin-bottom:-10px;'>
<h2 style='font-size: 30px; font-family: Palatino, serif;
letter-spacing: 2px; text-decoration: none;'>
📈
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: none;'>
Forecast Plot
</span>
<span style='font-size: 40%;'>
<sup style='position: relative; top: 5px; color: #ed4965;'></sup>
</span>
</h2>
</div>
""", unsafe_allow_html=True)
## round fig.
y_train_true['y']=y_train_true['y'].astype('int')
y_train_pred['yhat']=y_train_pred['yhat'].astype('int')
y_test_true['y']=y_test_true['y'].astype('int')
y_test_pred['yhat']=y_test_pred['yhat'].astype('int')
future_prediction['yhat']=future_prediction['yhat'].astype('int')
y_train_true['ds']=y_train_true['ds'].dt.date
y_train_pred['ds']=y_train_pred['ds'].dt.date
y_test_true['ds']=y_test_true['ds'].dt.date
y_test_pred['ds']=y_test_pred['ds'].dt.date
future_prediction['ds']=future_prediction['ds'].dt.date
#-----------------------------plot---------------------------------------------------------------------------------------------
fig = go.Figure([
# go.Scatter(x=y_train_true['ds'],y=y_train_true['y'],name='Train Observed',line=dict(color='rgba(50, 205, 50, 0.7)' )),
# go.Scatter(x=y_train_pred['ds'],y=y_train_pred['yhat'],name='Prophet Pred.(10 Item)',line=dict(color='#32CD32', dash='dot')),
go.Scatter(x=y_test_true['ds'], y=y_test_true['y'],name='Observed',line=dict(color='rgba(218, 112, 214, 0.5)')),
go.Scatter(x=y_test_pred['ds'],y=y_test_pred['yhat'],name='Historical Forecast',line=dict(color='#9400D3', dash='dash')),
go.Scatter(x=future_prediction['ds'],y=future_prediction['yhat'],name='Future Forecast',line=dict(color='Dark Orange', dash='dot'))])
fig.update_layout(
xaxis_title='Date',
yaxis_title='Order Demand',
margin=dict(l=0, r=0, t=50, b=0),
xaxis=dict(title_font=dict(size=20)),
yaxis=dict(title_font=dict(size=20)))
fig.update_layout(width=700,height=400)
tab1.plotly_chart(fig)
#----------------------------------------Tab-2------------------------------------------------------------
results=y_test_pred.reset_index()
results['store']='store_1'
results['item']=item
tab2.markdown("""
<div style='text-align: left; margin-top:-10px;'>
<h2 style='font-size: 30px; font-family: Palatino, serif;
letter-spacing: 2px; text-decoration: none;'>
📃
<span style='background: linear-gradient(45deg, #ed4965, #c05aaf);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: none;'>
Forecast Table
</span>
<span style='font-size: 40%;'>
<sup style='position: relative; top: 5px; color: #ed4965;'></sup>
</span>
</h2>
</div>
""", unsafe_allow_html=True)
final_r=pd.concat([future_prediction[['ds','store','item','yhat']],results[['ds','store','item','yhat']]]).sort_values('ds').drop_duplicates().reset_index(drop=True)
csv = convert_df(final_r)
tab2.dataframe(final_r,width=500)
tab2.download_button(
"Download",
csv,
"file.csv",
"text/csv",
key='download-csv'
)
#------------------------------------------Tab-3--------------------------------------------------
# train_a=fb_train_data.loc[fb_train_data[item]==1][['ds','sales']]
# # train_a['store']=1
# # train_a['item']=item
# test_a=fb_test_data.loc[fb_test_data[item]==1][['ds','sales']]
# # test_a['store']=1
# # test_a['item']=item.split('_')[-1]
# actual_final_data=pd.concat([train_a,test_a])
# actual_final_data['store']=1
# actual_final_data['item']=item.split('_')[-1]
# actual_final_data['ds']=actual_final_data['ds'].dt.date
# actual_final_data.rename({"ds":'date'},inplace=True)
# tab3.dataframe(actual_final_data[['date','store','item','sales']],width=500)
except:
st.sidebar.error('Model Not Loaded successfully!',icon="🚨")
|