afrizalha commited on
Commit
ff2a72a
1 Parent(s): 2e4a4ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -10,7 +10,7 @@ tinier = AutoModelForCausalLM.from_pretrained("afrizalha/Sasando-1-7M", token=hf
10
 
11
  desc = """Sasando-1 is a tiny, highly experimental text generator built using the Phi-3 architecture. It comes with two variations of microscopic sizes: 7M and 25M parameters. It is trained on a tightly-controlled Indo4B dataset filtered to only have 18000 unique words. The method is inspired by Microsoft's TinyStories paper which demonstrates that a tiny language model can produce fluent text when trained on tightly-controlled dataset.\n\nTry prompting with two simple words, and let the model continue. Fun examples provided below."""
12
 
13
- def generate(starting_text=None, choice=None, temp=None, top_p=None, info=False):
14
  if info:
15
  return desc
16
 
@@ -18,6 +18,8 @@ def generate(starting_text=None, choice=None, temp=None, top_p=None, info=False)
18
  model = tinier
19
  elif choice == '25M':
20
  model = tiny
 
 
21
 
22
  results = []
23
  for i in range(5):
@@ -36,18 +38,17 @@ def generate(starting_text=None, choice=None, temp=None, top_p=None, info=False)
36
 
37
  with gr.Blocks(theme=gr.themes.Soft()) as app:
38
  starting_text = gr.Textbox(label="Starting text", value="cinta adalah")
39
- choice = gr.Radio(["7M", "25M"], label="Select model", value="7M")
40
- info_button = gr.Button("Info")
41
 
42
- with gr.Row():
43
- temp = gr.Slider(label="Temperature", minimum=0.05, maximum=1.0, step=0.05, value=0.7)
44
- top_p = gr.Slider(label="Top P", minimum=0.05, maximum=1.0, step=0.05, value=0.5)
45
 
46
  res = gr.Textbox(label="Continuation")
47
 
48
  gr.Interface(
49
  fn=generate,
50
- inputs=[starting_text, choice, temp, top_p, info_button],
51
  outputs=[res],
52
  allow_flagging="never",
53
  title="Sasando-1",
@@ -57,5 +58,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as app:
57
  ["gue"], ["presiden"], ["cinta adalah"], ["allah, aku"], ["dia marah karena"],
58
  ["inflasi"], ["kolam renang"], ["messi"], ["jalan-jalan"], ["komputer itu"]
59
  ], [starting_text])
60
-
61
  app.launch()
 
10
 
11
  desc = """Sasando-1 is a tiny, highly experimental text generator built using the Phi-3 architecture. It comes with two variations of microscopic sizes: 7M and 25M parameters. It is trained on a tightly-controlled Indo4B dataset filtered to only have 18000 unique words. The method is inspired by Microsoft's TinyStories paper which demonstrates that a tiny language model can produce fluent text when trained on tightly-controlled dataset.\n\nTry prompting with two simple words, and let the model continue. Fun examples provided below."""
12
 
13
+ def generate(starting_text=None, choice=None, temp=None, top_p=None):
14
  if info:
15
  return desc
16
 
 
18
  model = tinier
19
  elif choice == '25M':
20
  model = tiny
21
+ elif choice == "Info":
22
+ return desc
23
 
24
  results = []
25
  for i in range(5):
 
38
 
39
  with gr.Blocks(theme=gr.themes.Soft()) as app:
40
  starting_text = gr.Textbox(label="Starting text", value="cinta adalah")
41
+ choice = gr.Radio(["7M", "25M", "Info"], label="Select model", info="Built with the Phi-3 architecture", value='Info')
 
42
 
43
+ with gr.Row() as slider_options:
44
+ temp = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7)
45
+ top_p = gr.Slider(label="Top P", minimum=0.1, maximum=1.0, step=0.1, value=0.5)
46
 
47
  res = gr.Textbox(label="Continuation")
48
 
49
  gr.Interface(
50
  fn=generate,
51
+ inputs=[starting_text, choice, slider_options],
52
  outputs=[res],
53
  allow_flagging="never",
54
  title="Sasando-1",
 
58
  ["gue"], ["presiden"], ["cinta adalah"], ["allah, aku"], ["dia marah karena"],
59
  ["inflasi"], ["kolam renang"], ["messi"], ["jalan-jalan"], ["komputer itu"]
60
  ], [starting_text])
 
61
  app.launch()