|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition, ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader |
|
from langchain_community.vectorstores import Chroma |
|
from langchain_core.documents import Document |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
import json |
|
from langchain.vectorstores import Chroma |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.schema import Document |
|
|
|
load_dotenv() |
|
|
|
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" |
|
groq_api_key = os.getenv("GROQ_API_KEY") |
|
|
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiply two numbers. |
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Add two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtract two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> int: |
|
"""Divide two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Get the modulus of two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Search Wikipedia for a query and return maximum 2 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search Tavily for a query and return maximum 3 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"web_results": formatted_search_docs} |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"arvix_results": formatted_search_docs} |
|
|
|
@tool |
|
def similar_question_search(question: str) -> str: |
|
"""Search the vector database for similar questions and return the first results. |
|
|
|
Args: |
|
question: the question human provided.""" |
|
matched_docs = vector_store.similarity_search(query, 3) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in matched_docs |
|
]) |
|
return {"similar_questions": formatted_search_docs} |
|
|
|
|
|
system_prompt = """ |
|
You are a helpful assistant tasked with answering questions using a set of tools. |
|
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: |
|
FINAL ANSWER: [YOUR FINAL ANSWER]. |
|
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. |
|
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. |
|
""" |
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
|
with open('metadata.jsonl', 'r') as jsonl_file: |
|
json_list = list(jsonl_file) |
|
|
|
json_QA = [] |
|
for json_str in json_list: |
|
json_data = json.loads(json_str) |
|
json_QA.append(json_data) |
|
|
|
documents = [] |
|
for sample in json_QA: |
|
content = f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}" |
|
metadata = {"source": sample["task_id"]} |
|
documents.append(Document(page_content=content, metadata=metadata)) |
|
|
|
|
|
vector_store = Chroma.from_documents( |
|
documents=documents, |
|
embedding=embeddings, |
|
persist_directory="./chroma_db", |
|
collection_name="my_collection" |
|
) |
|
vector_store.persist() |
|
print("Documents inserted:", vector_store._collection.count()) |
|
|
|
|
|
|
|
retriever_tool = create_retriever_tool( |
|
retriever=vector_store.as_retriever(), |
|
name="Question Search", |
|
description="A tool to retrieve similar questions from a vector store.", |
|
) |
|
|
|
|
|
tools = [ |
|
multiply, add, subtract, divide, modulus, |
|
wiki_search, web_search, arvix_search, |
|
] |
|
|
|
|
|
def build_graph(provider: str = "groq"): |
|
|
|
llm = ChatGroq(model="qwen-qwq-32b", temperature=0,api_key=groq_api_key) |
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
def assistant(state: MessagesState): |
|
return {"messages": [llm_with_tools.invoke(state["messages"])]} |
|
|
|
def retriever(state: MessagesState): |
|
similar = vector_store.similarity_search(state["messages"][0].content) |
|
if similar: |
|
example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}") |
|
return {"messages": [sys_msg] + state["messages"] + [example_msg]} |
|
return {"messages": [sys_msg] + state["messages"]} |
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("retriever", retriever) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_edge(START, "retriever") |
|
builder.add_edge("retriever", "assistant") |
|
builder.add_conditional_edges("assistant", tools_condition) |
|
builder.add_edge("tools", "assistant") |
|
|
|
return builder.compile() |