|
import os
|
|
from dotenv import load_dotenv
|
|
from typing import List, Dict, Any, Optional
|
|
import tempfile
|
|
import re
|
|
import json
|
|
import requests
|
|
from urllib.parse import urlparse
|
|
import pytesseract
|
|
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
|
|
import cmath
|
|
import pandas as pd
|
|
import uuid
|
|
import numpy as np
|
|
from code_interpreter import CodeInterpreter
|
|
|
|
interpreter_instance = CodeInterpreter()
|
|
|
|
from image_processing import *
|
|
|
|
"""Langraph"""
|
|
from langgraph.graph import START, StateGraph, MessagesState
|
|
from langchain_community.tools.tavily_search import TavilySearchResults
|
|
from langchain_community.document_loaders import WikipediaLoader
|
|
from langchain_community.document_loaders import ArxivLoader
|
|
from langgraph.prebuilt import ToolNode, tools_condition
|
|
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
from langchain_groq import ChatGroq
|
|
from langchain_huggingface import (
|
|
ChatHuggingFace,
|
|
HuggingFaceEndpoint,
|
|
HuggingFaceEmbeddings,
|
|
)
|
|
from langchain_community.vectorstores import SupabaseVectorStore
|
|
from langchain_core.messages import SystemMessage, HumanMessage
|
|
from langchain_core.tools import tool
|
|
from langchain.tools.retriever import create_retriever_tool
|
|
from supabase.client import Client, create_client
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
|
|
@tool
|
|
def wiki_search(query: str) -> str:
|
|
"""Search Wikipedia for a query and return maximum 2 results.
|
|
|
|
Args:
|
|
query: The search query."""
|
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
|
formatted_search_docs = "\n\n---\n\n".join(
|
|
[
|
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
|
for doc in search_docs
|
|
]
|
|
)
|
|
return {"wiki_results": formatted_search_docs}
|
|
|
|
|
|
@tool
|
|
def web_search(query: str) -> str:
|
|
"""Search Tavily for a query and return maximum 3 results.
|
|
|
|
Args:
|
|
query: The search query."""
|
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
|
formatted_search_docs = "\n\n---\n\n".join(
|
|
[
|
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
|
for doc in search_docs
|
|
]
|
|
)
|
|
return {"web_results": formatted_search_docs}
|
|
|
|
|
|
@tool
|
|
def arxiv_search(query: str) -> str:
|
|
"""Search Arxiv for a query and return maximum 3 result.
|
|
|
|
Args:
|
|
query: The search query."""
|
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
|
formatted_search_docs = "\n\n---\n\n".join(
|
|
[
|
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
|
for doc in search_docs
|
|
]
|
|
)
|
|
return {"arxiv_results": formatted_search_docs}
|
|
|
|
|
|
|
|
|
|
|
|
@tool
|
|
def execute_code_multilang(code: str, language: str = "python") -> str:
|
|
"""Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
|
|
|
|
Args:
|
|
code (str): The source code to execute.
|
|
language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
|
|
|
|
Returns:
|
|
A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any).
|
|
"""
|
|
supported_languages = ["python", "bash", "sql", "c", "java"]
|
|
language = language.lower()
|
|
|
|
if language not in supported_languages:
|
|
return f"❌ Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}"
|
|
|
|
result = interpreter_instance.execute_code(code, language=language)
|
|
|
|
response = []
|
|
|
|
if result["status"] == "success":
|
|
response.append(f"✅ Code executed successfully in **{language.upper()}**")
|
|
|
|
if result.get("stdout"):
|
|
response.append(
|
|
"\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```"
|
|
)
|
|
|
|
if result.get("stderr"):
|
|
response.append(
|
|
"\n**Standard Error (if any):**\n```\n"
|
|
+ result["stderr"].strip()
|
|
+ "\n```"
|
|
)
|
|
|
|
if result.get("result") is not None:
|
|
response.append(
|
|
"\n**Execution Result:**\n```\n"
|
|
+ str(result["result"]).strip()
|
|
+ "\n```"
|
|
)
|
|
|
|
if result.get("dataframes"):
|
|
for df_info in result["dataframes"]:
|
|
response.append(
|
|
f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**"
|
|
)
|
|
df_preview = pd.DataFrame(df_info["head"])
|
|
response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```")
|
|
|
|
if result.get("plots"):
|
|
response.append(
|
|
f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)"
|
|
)
|
|
|
|
else:
|
|
response.append(f"❌ Code execution failed in **{language.upper()}**")
|
|
if result.get("stderr"):
|
|
response.append(
|
|
"\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```"
|
|
)
|
|
|
|
return "\n".join(response)
|
|
|
|
|
|
|
|
|
|
|
|
@tool
|
|
def multiply(a: float, b: float) -> float:
|
|
"""
|
|
Multiplies two numbers.
|
|
|
|
Args:
|
|
a (float): the first number
|
|
b (float): the second number
|
|
"""
|
|
return a * b
|
|
|
|
|
|
@tool
|
|
def add(a: float, b: float) -> float:
|
|
"""
|
|
Adds two numbers.
|
|
|
|
Args:
|
|
a (float): the first number
|
|
b (float): the second number
|
|
"""
|
|
return a + b
|
|
|
|
|
|
@tool
|
|
def subtract(a: float, b: float) -> int:
|
|
"""
|
|
Subtracts two numbers.
|
|
|
|
Args:
|
|
a (float): the first number
|
|
b (float): the second number
|
|
"""
|
|
return a - b
|
|
|
|
|
|
@tool
|
|
def divide(a: float, b: float) -> float:
|
|
"""
|
|
Divides two numbers.
|
|
|
|
Args:
|
|
a (float): the first float number
|
|
b (float): the second float number
|
|
"""
|
|
if b == 0:
|
|
raise ValueError("Cannot divided by zero.")
|
|
return a / b
|
|
|
|
|
|
@tool
|
|
def modulus(a: int, b: int) -> int:
|
|
"""
|
|
Get the modulus of two numbers.
|
|
|
|
Args:
|
|
a (int): the first number
|
|
b (int): the second number
|
|
"""
|
|
return a % b
|
|
|
|
|
|
@tool
|
|
def power(a: float, b: float) -> float:
|
|
"""
|
|
Get the power of two numbers.
|
|
|
|
Args:
|
|
a (float): the first number
|
|
b (float): the second number
|
|
"""
|
|
return a**b
|
|
|
|
|
|
@tool
|
|
def square_root(a: float) -> float | complex:
|
|
"""
|
|
Get the square root of a number.
|
|
|
|
Args:
|
|
a (float): the number to get the square root of
|
|
"""
|
|
if a >= 0:
|
|
return a**0.5
|
|
return cmath.sqrt(a)
|
|
|
|
|
|
|
|
|
|
|
|
@tool
|
|
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
|
|
"""
|
|
Save content to a file and return the path.
|
|
|
|
Args:
|
|
content (str): the content to save to the file
|
|
filename (str, optional): the name of the file. If not provided, a random name file will be created.
|
|
"""
|
|
temp_dir = tempfile.gettempdir()
|
|
if filename is None:
|
|
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
|
|
filepath = temp_file.name
|
|
else:
|
|
filepath = os.path.join(temp_dir, filename)
|
|
|
|
with open(filepath, "w") as f:
|
|
f.write(content)
|
|
|
|
return f"File saved to {filepath}. You can read this file to process its contents."
|
|
|
|
|
|
@tool
|
|
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
|
|
"""
|
|
Download a file from a URL and save it to a temporary location.
|
|
|
|
Args:
|
|
url (str): the URL of the file to download.
|
|
filename (str, optional): the name of the file. If not provided, a random name file will be created.
|
|
"""
|
|
try:
|
|
|
|
if not filename:
|
|
path = urlparse(url).path
|
|
filename = os.path.basename(path)
|
|
if not filename:
|
|
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
|
|
|
|
|
|
temp_dir = tempfile.gettempdir()
|
|
filepath = os.path.join(temp_dir, filename)
|
|
|
|
|
|
response = requests.get(url, stream=True)
|
|
response.raise_for_status()
|
|
|
|
|
|
with open(filepath, "wb") as f:
|
|
for chunk in response.iter_content(chunk_size=8192):
|
|
f.write(chunk)
|
|
|
|
return f"File downloaded to {filepath}. You can read this file to process its contents."
|
|
except Exception as e:
|
|
return f"Error downloading file: {str(e)}"
|
|
|
|
|
|
@tool
|
|
def extract_text_from_image(image_path: str) -> str:
|
|
"""
|
|
Extract text from an image using OCR library pytesseract (if available).
|
|
|
|
Args:
|
|
image_path (str): the path to the image file.
|
|
"""
|
|
try:
|
|
|
|
image = Image.open(image_path)
|
|
|
|
|
|
text = pytesseract.image_to_string(image)
|
|
|
|
return f"Extracted text from image:\n\n{text}"
|
|
except Exception as e:
|
|
return f"Error extracting text from image: {str(e)}"
|
|
|
|
|
|
@tool
|
|
def analyze_csv_file(file_path: str, query: str) -> str:
|
|
"""
|
|
Analyze a CSV file using pandas and answer a question about it.
|
|
|
|
Args:
|
|
file_path (str): the path to the CSV file.
|
|
query (str): Question about the data
|
|
"""
|
|
try:
|
|
|
|
df = pd.read_csv(file_path)
|
|
|
|
|
|
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
|
result += f"Columns: {', '.join(df.columns)}\n\n"
|
|
|
|
|
|
result += "Summary statistics:\n"
|
|
result += str(df.describe())
|
|
|
|
return result
|
|
|
|
except Exception as e:
|
|
return f"Error analyzing CSV file: {str(e)}"
|
|
|
|
|
|
@tool
|
|
def analyze_excel_file(file_path: str, query: str) -> str:
|
|
"""
|
|
Analyze an Excel file using pandas and answer a question about it.
|
|
|
|
Args:
|
|
file_path (str): the path to the Excel file.
|
|
query (str): Question about the data
|
|
"""
|
|
try:
|
|
|
|
df = pd.read_excel(file_path)
|
|
|
|
|
|
result = (
|
|
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
|
)
|
|
result += f"Columns: {', '.join(df.columns)}\n\n"
|
|
|
|
|
|
result += "Summary statistics:\n"
|
|
result += str(df.describe())
|
|
|
|
return result
|
|
|
|
except Exception as e:
|
|
return f"Error analyzing Excel file: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
@tool
|
|
def analyze_image(image_base64: str) -> Dict[str, Any]:
|
|
"""
|
|
Analyze basic properties of an image (size, mode, color analysis, thumbnail preview).
|
|
|
|
Args:
|
|
image_base64 (str): Base64 encoded image string
|
|
|
|
Returns:
|
|
Dictionary with analysis result
|
|
"""
|
|
try:
|
|
img = decode_image(image_base64)
|
|
width, height = img.size
|
|
mode = img.mode
|
|
|
|
if mode in ("RGB", "RGBA"):
|
|
arr = np.array(img)
|
|
avg_colors = arr.mean(axis=(0, 1))
|
|
dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])]
|
|
brightness = avg_colors.mean()
|
|
color_analysis = {
|
|
"average_rgb": avg_colors.tolist(),
|
|
"brightness": brightness,
|
|
"dominant_color": dominant,
|
|
}
|
|
else:
|
|
color_analysis = {"note": f"No color analysis for mode {mode}"}
|
|
|
|
thumbnail = img.copy()
|
|
thumbnail.thumbnail((100, 100))
|
|
thumb_path = save_image(thumbnail, "thumbnails")
|
|
thumbnail_base64 = encode_image(thumb_path)
|
|
|
|
return {
|
|
"dimensions": (width, height),
|
|
"mode": mode,
|
|
"color_analysis": color_analysis,
|
|
"thumbnail": thumbnail_base64,
|
|
}
|
|
except Exception as e:
|
|
return {"error": str(e)}
|
|
|
|
|
|
@tool
|
|
def transform_image(
|
|
image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale.
|
|
|
|
Args:
|
|
image_base64 (str): Base64 encoded input image
|
|
operation (str): Transformation operation
|
|
params (Dict[str, Any], optional): Parameters for the operation
|
|
|
|
Returns:
|
|
Dictionary with transformed image (base64)
|
|
"""
|
|
try:
|
|
img = decode_image(image_base64)
|
|
params = params or {}
|
|
|
|
if operation == "resize":
|
|
img = img.resize(
|
|
(
|
|
params.get("width", img.width // 2),
|
|
params.get("height", img.height // 2),
|
|
)
|
|
)
|
|
elif operation == "rotate":
|
|
img = img.rotate(params.get("angle", 90), expand=True)
|
|
elif operation == "crop":
|
|
img = img.crop(
|
|
(
|
|
params.get("left", 0),
|
|
params.get("top", 0),
|
|
params.get("right", img.width),
|
|
params.get("bottom", img.height),
|
|
)
|
|
)
|
|
elif operation == "flip":
|
|
if params.get("direction", "horizontal") == "horizontal":
|
|
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
|
else:
|
|
img = img.transpose(Image.FLIP_TOP_BOTTOM)
|
|
elif operation == "adjust_brightness":
|
|
img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5))
|
|
elif operation == "adjust_contrast":
|
|
img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5))
|
|
elif operation == "blur":
|
|
img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2)))
|
|
elif operation == "sharpen":
|
|
img = img.filter(ImageFilter.SHARPEN)
|
|
elif operation == "grayscale":
|
|
img = img.convert("L")
|
|
else:
|
|
return {"error": f"Unknown operation: {operation}"}
|
|
|
|
result_path = save_image(img)
|
|
result_base64 = encode_image(result_path)
|
|
return {"transformed_image": result_base64}
|
|
|
|
except Exception as e:
|
|
return {"error": str(e)}
|
|
|
|
|
|
@tool
|
|
def draw_on_image(
|
|
image_base64: str, drawing_type: str, params: Dict[str, Any]
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Draw shapes (rectangle, circle, line) or text onto an image.
|
|
|
|
Args:
|
|
image_base64 (str): Base64 encoded input image
|
|
drawing_type (str): Drawing type
|
|
params (Dict[str, Any]): Drawing parameters
|
|
|
|
Returns:
|
|
Dictionary with result image (base64)
|
|
"""
|
|
try:
|
|
img = decode_image(image_base64)
|
|
draw = ImageDraw.Draw(img)
|
|
color = params.get("color", "red")
|
|
|
|
if drawing_type == "rectangle":
|
|
draw.rectangle(
|
|
[params["left"], params["top"], params["right"], params["bottom"]],
|
|
outline=color,
|
|
width=params.get("width", 2),
|
|
)
|
|
elif drawing_type == "circle":
|
|
x, y, r = params["x"], params["y"], params["radius"]
|
|
draw.ellipse(
|
|
(x - r, y - r, x + r, y + r),
|
|
outline=color,
|
|
width=params.get("width", 2),
|
|
)
|
|
elif drawing_type == "line":
|
|
draw.line(
|
|
(
|
|
params["start_x"],
|
|
params["start_y"],
|
|
params["end_x"],
|
|
params["end_y"],
|
|
),
|
|
fill=color,
|
|
width=params.get("width", 2),
|
|
)
|
|
elif drawing_type == "text":
|
|
font_size = params.get("font_size", 20)
|
|
try:
|
|
font = ImageFont.truetype("arial.ttf", font_size)
|
|
except IOError:
|
|
font = ImageFont.load_default()
|
|
draw.text(
|
|
(params["x"], params["y"]),
|
|
params.get("text", "Text"),
|
|
fill=color,
|
|
font=font,
|
|
)
|
|
else:
|
|
return {"error": f"Unknown drawing type: {drawing_type}"}
|
|
|
|
result_path = save_image(img)
|
|
result_base64 = encode_image(result_path)
|
|
return {"result_image": result_base64}
|
|
|
|
except Exception as e:
|
|
return {"error": str(e)}
|
|
|
|
|
|
@tool
|
|
def generate_simple_image(
|
|
image_type: str,
|
|
width: int = 500,
|
|
height: int = 500,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Generate a simple image (gradient, noise, pattern, chart).
|
|
|
|
Args:
|
|
image_type (str): Type of image
|
|
width (int), height (int)
|
|
params (Dict[str, Any], optional): Specific parameters
|
|
|
|
Returns:
|
|
Dictionary with generated image (base64)
|
|
"""
|
|
try:
|
|
params = params or {}
|
|
|
|
if image_type == "gradient":
|
|
direction = params.get("direction", "horizontal")
|
|
start_color = params.get("start_color", (255, 0, 0))
|
|
end_color = params.get("end_color", (0, 0, 255))
|
|
|
|
img = Image.new("RGB", (width, height))
|
|
draw = ImageDraw.Draw(img)
|
|
|
|
if direction == "horizontal":
|
|
for x in range(width):
|
|
r = int(
|
|
start_color[0] + (end_color[0] - start_color[0]) * x / width
|
|
)
|
|
g = int(
|
|
start_color[1] + (end_color[1] - start_color[1]) * x / width
|
|
)
|
|
b = int(
|
|
start_color[2] + (end_color[2] - start_color[2]) * x / width
|
|
)
|
|
draw.line([(x, 0), (x, height)], fill=(r, g, b))
|
|
else:
|
|
for y in range(height):
|
|
r = int(
|
|
start_color[0] + (end_color[0] - start_color[0]) * y / height
|
|
)
|
|
g = int(
|
|
start_color[1] + (end_color[1] - start_color[1]) * y / height
|
|
)
|
|
b = int(
|
|
start_color[2] + (end_color[2] - start_color[2]) * y / height
|
|
)
|
|
draw.line([(0, y), (width, y)], fill=(r, g, b))
|
|
|
|
elif image_type == "noise":
|
|
noise_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
|
|
img = Image.fromarray(noise_array, "RGB")
|
|
|
|
else:
|
|
return {"error": f"Unsupported image_type {image_type}"}
|
|
|
|
result_path = save_image(img)
|
|
result_base64 = encode_image(result_path)
|
|
return {"generated_image": result_base64}
|
|
|
|
except Exception as e:
|
|
return {"error": str(e)}
|
|
|
|
|
|
@tool
|
|
def combine_images(
|
|
images_base64: List[str], operation: str, params: Optional[Dict[str, Any]] = None
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Combine multiple images (collage, stack, blend).
|
|
|
|
Args:
|
|
images_base64 (List[str]): List of base64 images
|
|
operation (str): Combination type
|
|
params (Dict[str, Any], optional)
|
|
|
|
Returns:
|
|
Dictionary with combined image (base64)
|
|
"""
|
|
try:
|
|
images = [decode_image(b64) for b64 in images_base64]
|
|
params = params or {}
|
|
|
|
if operation == "stack":
|
|
direction = params.get("direction", "horizontal")
|
|
if direction == "horizontal":
|
|
total_width = sum(img.width for img in images)
|
|
max_height = max(img.height for img in images)
|
|
new_img = Image.new("RGB", (total_width, max_height))
|
|
x = 0
|
|
for img in images:
|
|
new_img.paste(img, (x, 0))
|
|
x += img.width
|
|
else:
|
|
max_width = max(img.width for img in images)
|
|
total_height = sum(img.height for img in images)
|
|
new_img = Image.new("RGB", (max_width, total_height))
|
|
y = 0
|
|
for img in images:
|
|
new_img.paste(img, (0, y))
|
|
y += img.height
|
|
else:
|
|
return {"error": f"Unsupported combination operation {operation}"}
|
|
|
|
result_path = save_image(new_img)
|
|
result_base64 = encode_image(result_path)
|
|
return {"combined_image": result_base64}
|
|
|
|
except Exception as e:
|
|
return {"error": str(e)}
|
|
|
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
|
system_prompt = f.read()
|
|
print(system_prompt)
|
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt)
|
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(
|
|
model_name="sentence-transformers/all-mpnet-base-v2"
|
|
)
|
|
supabase: Client = create_client(
|
|
os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_ROLE_KEY")
|
|
)
|
|
vector_store = SupabaseVectorStore(
|
|
client=supabase,
|
|
embedding=embeddings,
|
|
table_name="documents2",
|
|
query_name="match_documents_2",
|
|
)
|
|
create_retriever_tool = create_retriever_tool(
|
|
retriever=vector_store.as_retriever(),
|
|
name="Question Search",
|
|
description="A tool to retrieve similar questions from a vector store.",
|
|
)
|
|
|
|
|
|
tools = [
|
|
web_search,
|
|
wiki_search,
|
|
arxiv_search,
|
|
multiply,
|
|
add,
|
|
subtract,
|
|
divide,
|
|
modulus,
|
|
power,
|
|
square_root,
|
|
save_and_read_file,
|
|
download_file_from_url,
|
|
extract_text_from_image,
|
|
analyze_csv_file,
|
|
analyze_excel_file,
|
|
execute_code_multilang,
|
|
analyze_image,
|
|
transform_image,
|
|
draw_on_image,
|
|
generate_simple_image,
|
|
combine_images,
|
|
]
|
|
|
|
|
|
|
|
def build_graph(provider: str = "groq"):
|
|
"""Build the graph"""
|
|
|
|
if provider == "groq":
|
|
|
|
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
|
elif provider == "huggingface":
|
|
|
|
llm = ChatHuggingFace(
|
|
llm=HuggingFaceEndpoint(
|
|
repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
|
task="text-generation",
|
|
max_new_tokens=1024,
|
|
do_sample=False,
|
|
repetition_penalty=1.03,
|
|
temperature=0,
|
|
),
|
|
verbose=True,
|
|
)
|
|
else:
|
|
raise ValueError("Invalid provider. Choose 'groq' or 'huggingface'.")
|
|
|
|
llm_with_tools = llm.bind_tools(tools)
|
|
|
|
|
|
def assistant(state: MessagesState):
|
|
"""Assistant node"""
|
|
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
|
|
|
def retriever(state: MessagesState):
|
|
"""Retriever node"""
|
|
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
|
|
|
if similar_question:
|
|
example_msg = HumanMessage(
|
|
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
|
)
|
|
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
|
else:
|
|
|
|
return {"messages": [sys_msg] + state["messages"]}
|
|
|
|
builder = StateGraph(MessagesState)
|
|
builder.add_node("retriever", retriever)
|
|
builder.add_node("assistant", assistant)
|
|
builder.add_node("tools", ToolNode(tools))
|
|
builder.add_edge(START, "retriever")
|
|
builder.add_edge("retriever", "assistant")
|
|
builder.add_conditional_edges(
|
|
"assistant",
|
|
tools_condition,
|
|
)
|
|
builder.add_edge("tools", "assistant")
|
|
|
|
|
|
return builder.compile()
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
|
graph = build_graph(provider="groq")
|
|
messages = [HumanMessage(content=question)]
|
|
messages = graph.invoke({"messages": messages})
|
|
for m in messages["messages"]:
|
|
m.pretty_print()
|
|
|