Files changed (6) hide show
  1. README.md +14 -14
  2. agent.py +194 -0
  3. app.py +206 -195
  4. metadata.jsonl +0 -0
  5. requirements.txt +18 -2
  6. system_prompt.txt +5 -0
README.md CHANGED
@@ -1,15 +1,15 @@
1
- ---
2
- title: Template Final Assignment
3
- emoji: 🕵🏻‍♂️
4
- colorFrom: indigo
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 5.25.2
8
- app_file: app.py
9
- pinned: false
10
- hf_oauth: true
11
- # optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
12
- hf_oauth_expiration_minutes: 480
13
- ---
14
-
15
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ ---
2
+ title: Template Final Assignment
3
+ emoji: 🕵🏻‍♂️
4
+ colorFrom: indigo
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 5.25.2
8
+ app_file: app.py
9
+ pinned: false
10
+ hf_oauth: true
11
+ # optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
12
+ hf_oauth_expiration_minutes: 480
13
+ ---
14
+
15
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
agent.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from langgraph.graph import START, StateGraph, MessagesState
4
+ from langgraph.prebuilt import tools_condition
5
+ from langgraph.prebuilt import ToolNode
6
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
7
+ from langchain_community.tools import DuckDuckGoSearchResults
8
+ from langchain_community.document_loaders import WikipediaLoader
9
+ from langchain_community.document_loaders import ArxivLoader
10
+ from langchain_community.vectorstores import SupabaseVectorStore
11
+ from langchain_core.messages import SystemMessage, HumanMessage
12
+ from langchain_core.tools import tool
13
+ from langchain.tools.retriever import create_retriever_tool
14
+ from supabase.client import Client, create_client
15
+
16
+ load_dotenv()
17
+
18
+ @tool
19
+ def multiply(a: int, b: int) -> int:
20
+ """Multiply two numbers.
21
+
22
+ Args:
23
+ a: first int
24
+ b: second int
25
+ """
26
+ return a * b
27
+
28
+ @tool
29
+ def add(a: int, b: int) -> int:
30
+ """Add two numbers.
31
+
32
+ Args:
33
+ a: first int
34
+ b: second int
35
+ """
36
+ return a+b
37
+
38
+ @tool
39
+ def subtract(a: int, b:int) -> int:
40
+ """Subtract two numbers.
41
+
42
+ Args:
43
+ a: first int
44
+ b: second int
45
+ """
46
+ return a-b
47
+
48
+ @tool
49
+ def divide(a: int, b: int) -> int:
50
+ """Divide two numbers.
51
+
52
+ Args:
53
+ a: first int
54
+ b: second int
55
+ """
56
+ if b == 0:
57
+ raise ValueError("Cannot divide by zero.")
58
+ return a / b
59
+
60
+ @tool
61
+ def modulus(a: int, b:int) -> int:
62
+ """Get the modulus of two numbers.
63
+
64
+ Args:
65
+ a: first int
66
+ b: second int
67
+ """
68
+ return a%b
69
+
70
+ @tool
71
+ def wiki_search(query: str) -> str:
72
+ """Search Wikipedia for a query and return maximum 2 results.
73
+
74
+ Args:
75
+ query: The search query.
76
+ """
77
+ search_docs = WikipediaLoader(query=query, load_max_docs=3).load()
78
+ formatted_search_docs = "\n\n---\n\n".join(
79
+ [
80
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
81
+ for doc in search_docs
82
+ ])
83
+ return {"wiki_results": formatted_search_docs}
84
+
85
+
86
+ @tool
87
+ def web_search(query: str) -> str:
88
+ """Search Duck2DuckGo for a query and return maximum 3 results.
89
+
90
+ Args:
91
+ query: The search query."""
92
+ search_docs = DuckDuckGoSearchResults(max_results=4).invoke(query=query)
93
+ formatted_search_docs = "\n\n---\n\n".join(
94
+ [
95
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
96
+ for doc in search_docs
97
+ ])
98
+ return {"web_results": formatted_search_docs}
99
+
100
+ @tool
101
+ def arvix_search(query: str) -> str:
102
+ """Search Arxiv for a query and return maximum 3 result.
103
+
104
+ Args:
105
+ query: The search query."""
106
+ search_docs = ArxivLoader(query=query, load_max_docs=2).load()
107
+ formatted_search_docs = "\n\n---\n\n".join(
108
+ [
109
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
110
+ for doc in search_docs
111
+ ])
112
+ return {"arvix_results": formatted_search_docs}
113
+
114
+
115
+ with open("system_prompt.txt","r",encoding="utf-8") as f:
116
+ system_prompt = f.read()
117
+
118
+ # System message
119
+ sys_msg = SystemMessage(content=system_prompt)
120
+
121
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
122
+ supabase: Client = create_client(
123
+ os.environ.get("SUPABASE_URL"),
124
+ os.environ.get("SUPABASE_SERVICE_KEY"))
125
+ vector_store = SupabaseVectorStore(
126
+ client=supabase,
127
+ embedding= embeddings,
128
+ table_name="documents",
129
+ query_name="match_documents_langchain",
130
+ )
131
+ create_retriever_tool = create_retriever_tool(
132
+ retriever=vector_store.as_retriever(),
133
+ name="Question Search",
134
+ description="A tool to retrieve similar questions from a vector store.",
135
+ )
136
+
137
+ tools = [
138
+ multiply,
139
+ add,
140
+ subtract,
141
+ divide,
142
+ modulus,
143
+ wiki_search,
144
+ web_search,
145
+ arvix_search,
146
+ ]
147
+
148
+ def build_graph():
149
+
150
+ llm = ChatHuggingFace(
151
+ llm=HuggingFaceEndpoint(
152
+ repo_id="meta-llama/Llama-2-7b-chat-hf",
153
+ temperature=0,
154
+ )
155
+ )
156
+ llm_with_tools = llm.bind_tools(tools)
157
+
158
+ def assistant(state: MessagesState):
159
+ """Assistant node"""
160
+ return{"messages":[llm_with_tools.invoke(state["messages"])]}
161
+
162
+ def retriever(state: MessagesState):
163
+ """Retriever node"""
164
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
165
+ example_msg = HumanMessage(
166
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
167
+ )
168
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
169
+
170
+ builder = StateGraph(MessagesState)
171
+ builder.add_node("retriever", retriever)
172
+ builder.add_node("assistant", assistant)
173
+ builder.add_node("tools", ToolNode(tools))
174
+
175
+ builder.add_edge(START,"retriever")
176
+ builder.add_edge("retriever","assistant")
177
+ builder.add_edge("retriever","assistant")
178
+ builder.add_conditional_edges(
179
+ "assistant",
180
+ tools_condition,
181
+ )
182
+ builder.add_edge("tools","assistant")
183
+
184
+ return builder.compile()
185
+
186
+ if __name__ == "__main__":
187
+ question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
188
+
189
+ # Build the graph
190
+ graph = build_graph()
191
+ messages = [HumanMessage(content=question)]
192
+ messages = graph.invoke({"messages":messages})
193
+ for m in messages["messages"]:
194
+ m.preetty_print()
app.py CHANGED
@@ -1,196 +1,207 @@
1
- import os
2
- import gradio as gr
3
- import requests
4
- import inspect
5
- import pandas as pd
6
-
7
- # (Keep Constants as is)
8
- # --- Constants ---
9
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
-
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
-
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
-
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
- try:
43
- agent = BasicAgent()
44
- except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
-
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
- try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
- try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
- except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
-
90
- if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
-
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
- try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
- )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
-
143
- # --- Build Gradio Interface using Blocks ---
144
- with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
- """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
- )
160
-
161
- gr.LoginButton()
162
-
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
-
174
- if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
 
 
 
 
 
 
 
 
 
 
 
196
  demo.launch(debug=True, share=False)
 
1
+ """ Basic Agent Evaluation Runner"""
2
+ import os
3
+ import inspect
4
+ import gradio as gr
5
+ import requests
6
+ import pandas as pd
7
+ from langchain_core.messages import HumanMessage
8
+ from agent import build_graph
9
+
10
+
11
+
12
+ # (Keep Constants as is)
13
+ # --- Constants ---
14
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
15
+
16
+ # --- Basic Agent Definition ---
17
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
18
+
19
+
20
+ class BasicAgent:
21
+ """A langgraph agent."""
22
+ def __init__(self):
23
+ print("BasicAgent initialized.")
24
+ self.graph = build_graph()
25
+
26
+ def __call__(self, question: str) -> str:
27
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
28
+ # Wrap the question in a HumanMessage from langchain_core
29
+ messages = [HumanMessage(content=question)]
30
+ messages = self.graph.invoke({"messages": messages})
31
+ answer = messages['messages'][-1].content
32
+ return answer[14:]
33
+
34
+
35
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
36
+ """
37
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
38
+ and displays the results.
39
+ """
40
+ # --- Determine HF Space Runtime URL and Repo URL ---
41
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
42
+
43
+ if profile:
44
+ username= f"{profile.username}"
45
+ print(f"User logged in: {username}")
46
+ else:
47
+ print("User not logged in.")
48
+ return "Please Login to Hugging Face with the button.", None
49
+
50
+ api_url = DEFAULT_API_URL
51
+ questions_url = f"{api_url}/questions"
52
+ submit_url = f"{api_url}/submit"
53
+
54
+ # 1. Instantiate Agent ( modify this part to create your agent)
55
+ try:
56
+ agent = BasicAgent()
57
+ except Exception as e:
58
+ print(f"Error instantiating agent: {e}")
59
+ return f"Error initializing agent: {e}", None
60
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
61
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
62
+ print(agent_code)
63
+
64
+ # 2. Fetch Questions
65
+ print(f"Fetching questions from: {questions_url}")
66
+ try:
67
+ response = requests.get(questions_url, timeout=15)
68
+ response.raise_for_status()
69
+ questions_data = response.json()
70
+ if not questions_data:
71
+ print("Fetched questions list is empty.")
72
+ return "Fetched questions list is empty or invalid format.", None
73
+ print(f"Fetched {len(questions_data)} questions.")
74
+ except requests.exceptions.RequestException as e:
75
+ print(f"Error fetching questions: {e}")
76
+ return f"Error fetching questions: {e}", None
77
+ except requests.exceptions.JSONDecodeError as e:
78
+ print(f"Error decoding JSON response from questions endpoint: {e}")
79
+ print(f"Response text: {response.text[:500]}")
80
+ return f"Error decoding server response for questions: {e}", None
81
+ except Exception as e:
82
+ print(f"An unexpected error occurred fetching questions: {e}")
83
+ return f"An unexpected error occurred fetching questions: {e}", None
84
+
85
+ # 3. Run your Agent
86
+ results_log = []
87
+ answers_payload = []
88
+ print(f"Running agent on {len(questions_data)} questions...")
89
+ for item in questions_data:
90
+ task_id = item.get("task_id")
91
+ question_text = item.get("question")
92
+ if not task_id or question_text is None:
93
+ print(f"Skipping item with missing task_id or question: {item}")
94
+ continue
95
+ try:
96
+ submitted_answer = agent(question_text)
97
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
98
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
99
+ except Exception as e:
100
+ print(f"Error running agent on task {task_id}: {e}")
101
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
102
+
103
+ if not answers_payload:
104
+ print("Agent did not produce any answers to submit.")
105
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
106
+
107
+ # 4. Prepare Submission
108
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
109
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
110
+ print(status_update)
111
+
112
+ # 5. Submit
113
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
114
+ try:
115
+ response = requests.post(submit_url, json=submission_data, timeout=60)
116
+ response.raise_for_status()
117
+ result_data = response.json()
118
+ final_status = (
119
+ f"Submission Successful!\n"
120
+ f"User: {result_data.get('username')}\n"
121
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
122
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
123
+ f"Message: {result_data.get('message', 'No message received.')}"
124
+ )
125
+ print("Submission successful.")
126
+ results_df = pd.DataFrame(results_log)
127
+ return final_status, results_df
128
+ except requests.exceptions.HTTPError as e:
129
+ error_detail = f"Server responded with status {e.response.status_code}."
130
+ try:
131
+ error_json = e.response.json()
132
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
133
+ except requests.exceptions.JSONDecodeError:
134
+ error_detail += f" Response: {e.response.text[:500]}"
135
+ status_message = f"Submission Failed: {error_detail}"
136
+ print(status_message)
137
+ results_df = pd.DataFrame(results_log)
138
+ return status_message, results_df
139
+ except requests.exceptions.Timeout:
140
+ status_message = "Submission Failed: The request timed out."
141
+ print(status_message)
142
+ results_df = pd.DataFrame(results_log)
143
+ return status_message, results_df
144
+ except requests.exceptions.RequestException as e:
145
+ status_message = f"Submission Failed: Network error - {e}"
146
+ print(status_message)
147
+ results_df = pd.DataFrame(results_log)
148
+ return status_message, results_df
149
+ except Exception as e:
150
+ status_message = f"An unexpected error occurred during submission: {e}"
151
+ print(status_message)
152
+ results_df = pd.DataFrame(results_log)
153
+ return status_message, results_df
154
+
155
+
156
+ # --- Build Gradio Interface using Blocks ---
157
+ with gr.Blocks() as demo:
158
+ gr.Markdown("# Basic Agent Evaluation Runner")
159
+ gr.Markdown(
160
+ """
161
+ **Instructions:**
162
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
163
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
164
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
165
+ ---
166
+ **Disclaimers:**
167
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
168
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
169
+ """
170
+ )
171
+
172
+ gr.LoginButton()
173
+
174
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
175
+
176
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
177
+ # Removed max_rows=10 from DataFrame constructor
178
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
179
+
180
+ run_button.click(
181
+ fn=run_and_submit_all,
182
+ outputs=[status_output, results_table]
183
+ )
184
+
185
+ if __name__ == "__main__":
186
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
187
+ # Check for SPACE_HOST and SPACE_ID at startup for information
188
+ space_host_startup = os.getenv("SPACE_HOST")
189
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
190
+
191
+ if space_host_startup:
192
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
193
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
194
+ else:
195
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
196
+
197
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
198
+ print(f"✅ SPACE_ID found: {space_id_startup}")
199
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
200
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
201
+ else:
202
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
203
+
204
+ print("-"*(60 + len(" App Starting ")) + "\n")
205
+
206
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
207
  demo.launch(debug=True, share=False)
metadata.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt CHANGED
@@ -1,2 +1,18 @@
1
- gradio
2
- requests
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ requests
3
+ langchain
4
+ langchain-community
5
+ langchain-core
6
+ langchain-google-genai
7
+ langchain-huggingface
8
+ langchain-groq
9
+ langchain-tavily
10
+ langchain-chroma
11
+ langgraph
12
+ huggingface_hub
13
+ supabase
14
+ arxiv
15
+ pymupdf
16
+ wikipedia
17
+ pgvector
18
+ python-dotenv
system_prompt.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ You are a helpful assistant tasked with answering questions using a set of tools.
2
+ Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
3
+ FINAL ANSWER: [YOUR FINAL ANSWER].
4
+ YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
5
+ Your answer should only start with "FINAL ANSWER: ", then follows with the answer.