GPT2-Blogger / app.py
ahabb's picture
app.py
d47c47b verified
raw
history blame
958 Bytes
import gradio as gr
from transformers import pipeline
# Initialize the text generation pipeline
generator = pipeline('text-generation', model='gpt2')
def generate_blogpost(topic, max_length=500):
prompt = f"Write a blog post about {topic}:\n\n"
# Generate the blog post
generated_text = generator(prompt, max_length=max_length, num_return_sequences=1)[0]['generated_text']
# Remove the prompt from the generated text
blog_post = generated_text[len(prompt):].strip()
return blog_post
# Create the Gradio interface
iface = gr.Interface(
fn=generate_blogpost,
inputs=[
gr.Textbox(lines=1, placeholder="Enter the blog post topic here..."),
gr.Slider(minimum=100, maximum=1000, step=50, label="Max Length", value=500)
],
outputs="text",
title="Blog Post Generator",
description="Enter a topic, and this app will generate a blog post using GPT-2."
)
# Launch the app
iface.launch()