ahassoun's picture
Upload 3018 files
ee6e328
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# ๋‹ค๊ตญ์–ด ๋ชจ๋ธ ์ถ”๋ก ํ•˜๊ธฐ[[multilingual-models-for-inference]]
[[open-in-colab]]
๐Ÿค— Transformers์—๋Š” ์—ฌ๋Ÿฌ ์ข…๋ฅ˜์˜ ๋‹ค๊ตญ์–ด(multilingual) ๋ชจ๋ธ์ด ์žˆ์œผ๋ฉฐ, ๋‹จ์ผ ์–ธ์–ด(monolingual) ๋ชจ๋ธ๊ณผ ์ถ”๋ก  ์‹œ ์‚ฌ์šฉ๋ฒ•์ด ๋‹ค๋ฆ…๋‹ˆ๋‹ค.
๊ทธ๋ ‡๋‹ค๊ณ  ํ•ด์„œ *๋ชจ๋“ * ๋‹ค๊ตญ์–ด ๋ชจ๋ธ์˜ ์‚ฌ์šฉ๋ฒ•์ด ๋‹ค๋ฅธ ๊ฒƒ์€ ์•„๋‹™๋‹ˆ๋‹ค.
[bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased)์™€ ๊ฐ™์€ ๋ช‡๋ช‡ ๋ชจ๋ธ์€ ๋‹จ์ผ ์–ธ์–ด ๋ชจ๋ธ์ฒ˜๋Ÿผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
์ด๋ฒˆ ๊ฐ€์ด๋“œ์—์„œ ๋‹ค๊ตญ์–ด ๋ชจ๋ธ์˜ ์ถ”๋ก  ์‹œ ์‚ฌ์šฉ ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ณผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
## XLM[[xlm]]
XLM์—๋Š” 10๊ฐ€์ง€ ์ฒดํฌํฌ์ธํŠธ(checkpoint)๊ฐ€ ์žˆ๋Š”๋ฐ, ์ด ์ค‘ ํ•˜๋‚˜๋งŒ ๋‹จ์ผ ์–ธ์–ด์ž…๋‹ˆ๋‹ค.
๋‚˜๋จธ์ง€ ์ฒดํฌํฌ์ธํŠธ 9๊ฐœ๋Š” ์–ธ์–ด ์ž„๋ฒ ๋”ฉ์„ ์‚ฌ์šฉํ•˜๋Š” ์ฒดํฌํฌ์ธํŠธ์™€ ๊ทธ๋ ‡์ง€ ์•Š์€ ์ฒดํฌํฌ์ธํŠธ์˜ ๋‘ ๊ฐ€์ง€ ๋ฒ”์ฃผ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
### ์–ธ์–ด ์ž„๋ฒ ๋”ฉ์„ ์‚ฌ์šฉํ•˜๋Š” XLM[[xlm-with-language-embeddings]]
๋‹ค์Œ XLM ๋ชจ๋ธ์€ ์ถ”๋ก  ์‹œ์— ์–ธ์–ด ์ž„๋ฒ ๋”ฉ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค:
- `xlm-mlm-ende-1024` (๋งˆ์Šคํ‚น๋œ ์–ธ์–ด ๋ชจ๋ธ๋ง, ์˜์–ด-๋…์ผ์–ด)
- `xlm-mlm-enfr-1024` (๋งˆ์Šคํ‚น๋œ ์–ธ์–ด ๋ชจ๋ธ๋ง, ์˜์–ด-ํ”„๋ž‘์Šค์–ด)
- `xlm-mlm-enro-1024` (๋งˆ์Šคํ‚น๋œ ์–ธ์–ด ๋ชจ๋ธ๋ง, ์˜์–ด-๋ฃจ๋งˆ๋‹ˆ์•„์–ด)
- `xlm-mlm-xnli15-1024` (๋งˆ์Šคํ‚น๋œ ์–ธ์–ด ๋ชจ๋ธ๋ง, XNLI ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ์ œ๊ณตํ•˜๋Š” 15๊ฐœ ๊ตญ์–ด)
- `xlm-mlm-tlm-xnli15-1024` (๋งˆ์Šคํ‚น๋œ ์–ธ์–ด ๋ชจ๋ธ๋ง + ๋ฒˆ์—ญ, XNLI ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ์ œ๊ณตํ•˜๋Š” 15๊ฐœ ๊ตญ์–ด)
- `xlm-clm-enfr-1024` (Causal language modeling, ์˜์–ด-ํ”„๋ž‘์Šค์–ด)
- `xlm-clm-ende-1024` (Causal language modeling, ์˜์–ด-๋…์ผ์–ด)
์–ธ์–ด ์ž„๋ฒ ๋”ฉ์€ ๋ชจ๋ธ์— ์ „๋‹ฌ๋œ `input_ids`์™€ ๋™์ผํ•œ shape์˜ ํ…์„œ๋กœ ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค.
์ด๋Ÿฌํ•œ ํ…์„œ์˜ ๊ฐ’์€ ์‚ฌ์šฉ๋œ ์–ธ์–ด์— ๋”ฐ๋ผ ๋‹ค๋ฅด๋ฉฐ ํ† ํฌ๋‚˜์ด์ €์˜ `lang2id` ๋ฐ `id2lang` ์†์„ฑ์— ์˜ํ•ด ์‹๋ณ„๋ฉ๋‹ˆ๋‹ค.
๋‹ค์Œ ์˜ˆ์ œ์—์„œ๋Š” `xlm-clm-enfr-1024` ์ฒดํฌํฌ์ธํŠธ(์ฝ”์ž˜ ์–ธ์–ด ๋ชจ๋ธ๋ง(causal language modeling), ์˜์–ด-ํ”„๋ž‘์Šค์–ด)๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค:
```py
>>> import torch
>>> from transformers import XLMTokenizer, XLMWithLMHeadModel
>>> tokenizer = XLMTokenizer.from_pretrained("xlm-clm-enfr-1024")
>>> model = XLMWithLMHeadModel.from_pretrained("xlm-clm-enfr-1024")
```
ํ† ํฌ๋‚˜์ด์ €์˜ `lang2id` ์†์„ฑ์€ ๋ชจ๋ธ์˜ ์–ธ์–ด์™€ ํ•ด๋‹น ID๋ฅผ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค:
```py
>>> print(tokenizer.lang2id)
{'en': 0, 'fr': 1}
```
๋‹ค์Œ์œผ๋กœ, ์˜ˆ์ œ ์ž…๋ ฅ์„ ๋งŒ๋“ญ๋‹ˆ๋‹ค:
```py
>>> input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # ๋ฐฐ์น˜ ํฌ๊ธฐ๋Š” 1์ž…๋‹ˆ๋‹ค
```
์–ธ์–ด ID๋ฅผ `"en"`์œผ๋กœ ์„ค์ •ํ•ด ์–ธ์–ด ์ž„๋ฒ ๋”ฉ์„ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
์–ธ์–ด ์ž„๋ฒ ๋”ฉ์€ ์˜์–ด์˜ ์–ธ์–ด ID์ธ `0`์œผ๋กœ ์ฑ„์›Œ์ง„ ํ…์„œ์ž…๋‹ˆ๋‹ค.
์ด ํ…์„œ๋Š” `input_ids`์™€ ๊ฐ™์€ ํฌ๊ธฐ์—ฌ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
```py
>>> language_id = tokenizer.lang2id["en"] # 0
>>> langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0])
>>> # (batch_size, sequence_length) shape์˜ ํ…์„œ๊ฐ€ ๋˜๋„๋ก ๋งŒ๋“ญ๋‹ˆ๋‹ค.
>>> langs = langs.view(1, -1) # ์ด์ œ [1, sequence_length] shape์ด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค(๋ฐฐ์น˜ ํฌ๊ธฐ๋Š” 1์ž…๋‹ˆ๋‹ค)
```
์ด์ œ `input_ids`์™€ ์–ธ์–ด ์ž„๋ฒ ๋”ฉ์„ ๋ชจ๋ธ๋กœ ์ „๋‹ฌํ•ฉ๋‹ˆ๋‹ค:
```py
>>> outputs = model(input_ids, langs=langs)
```
[run_generation.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation/run_generation.py) ์Šคํฌ๋ฆฝํŠธ๋กœ `xlm-clm` ์ฒดํฌํฌ์ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ด ํ…์ŠคํŠธ์™€ ์–ธ์–ด ์ž„๋ฒ ๋”ฉ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
### ์–ธ์–ด ์ž„๋ฒ ๋”ฉ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” XLM[[xlm-without-language-embeddings]]
๋‹ค์Œ XLM ๋ชจ๋ธ์€ ์ถ”๋ก  ์‹œ์— ์–ธ์–ด ์ž„๋ฒ ๋”ฉ์ด ํ•„์š”ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค:
- `xlm-mlm-17-1280` (๋งˆ์Šคํ‚น๋œ ์–ธ์–ด ๋ชจ๋ธ๋ง, 17๊ฐœ ๊ตญ์–ด)
- `xlm-mlm-100-1280` (๋งˆ์Šคํ‚น๋œ ์–ธ์–ด ๋ชจ๋ธ๋ง, 100๊ฐœ ๊ตญ์–ด)
์ด์ „์˜ XLM ์ฒดํฌํฌ์ธํŠธ์™€ ๋‹ฌ๋ฆฌ ์ด ๋ชจ๋ธ์€ ์ผ๋ฐ˜ ๋ฌธ์žฅ ํ‘œํ˜„์— ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
## BERT[[bert]]
๋‹ค์Œ BERT ๋ชจ๋ธ์€ ๋‹ค๊ตญ์–ด ํƒœ์Šคํฌ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
- `bert-base-multilingual-uncased` (๋งˆ์Šคํ‚น๋œ ์–ธ์–ด ๋ชจ๋ธ๋ง + ๋‹ค์Œ ๋ฌธ์žฅ ์˜ˆ์ธก, 102๊ฐœ ๊ตญ์–ด)
- `bert-base-multilingual-cased` (๋งˆ์Šคํ‚น๋œ ์–ธ์–ด ๋ชจ๋ธ๋ง + ๋‹ค์Œ ๋ฌธ์žฅ ์˜ˆ์ธก, 104๊ฐœ ๊ตญ์–ด)
์ด๋Ÿฌํ•œ ๋ชจ๋ธ์€ ์ถ”๋ก  ์‹œ์— ์–ธ์–ด ์ž„๋ฒ ๋”ฉ์ด ํ•„์š”ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
๋ฌธ๋งฅ์—์„œ ์–ธ์–ด๋ฅผ ์‹๋ณ„ํ•˜๊ณ , ์‹๋ณ„๋œ ์–ธ์–ด๋กœ ์ถ”๋ก ํ•ฉ๋‹ˆ๋‹ค.
## XLM-RoBERTa[[xlmroberta]]
๋‹ค์Œ XLM-RoBERTa ๋˜ํ•œ ๋‹ค๊ตญ์–ด ๋‹ค๊ตญ์–ด ํƒœ์Šคํฌ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
- `xlm-roberta-base` (๋งˆ์Šคํ‚น๋œ ์–ธ์–ด ๋ชจ๋ธ๋ง, 100๊ฐœ ๊ตญ์–ด)
- `xlm-roberta-large` (๋งˆ์Šคํ‚น๋œ ์–ธ์–ด ๋ชจ๋ธ๋ง, 100๊ฐœ ๊ตญ์–ด)
XLM-RoBERTa๋Š” 100๊ฐœ ๊ตญ์–ด์— ๋Œ€ํ•ด ์ƒˆ๋กœ ์ƒ์„ฑ๋˜๊ณ  ์ •์ œ๋œ 2.5TB ๊ทœ๋ชจ์˜ CommonCrawl ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
์ด์ „์— ๊ณต๊ฐœ๋œ mBERT๋‚˜ XLM๊ณผ ๊ฐ™์€ ๋‹ค๊ตญ์–ด ๋ชจ๋ธ์— ๋น„ํ•ด ๋ถ„๋ฅ˜, ์‹œํ€€์Šค ๋ผ๋ฒจ๋ง, ์งˆ์˜ ์‘๋‹ต๊ณผ ๊ฐ™์€ ๋‹ค์šด์ŠคํŠธ๋ฆผ(downstream) ์ž‘์—…์—์„œ ์ด์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
## M2M100[[m2m100]]
๋‹ค์Œ M2M100 ๋ชจ๋ธ ๋˜ํ•œ ๋‹ค๊ตญ์–ด ๋‹ค๊ตญ์–ด ํƒœ์Šคํฌ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
- `facebook/m2m100_418M` (๋ฒˆ์—ญ)
- `facebook/m2m100_1.2B` (๋ฒˆ์—ญ)
์ด ์˜ˆ์ œ์—์„œ๋Š” `facebook/m2m100_418M` ์ฒดํฌํฌ์ธํŠธ๋ฅผ ๊ฐ€์ ธ์™€์„œ ์ค‘๊ตญ์–ด๋ฅผ ์˜์–ด๋กœ ๋ฒˆ์—ญํ•ฉ๋‹ˆ๋‹ค.
ํ† ํฌ๋‚˜์ด์ €์—์„œ ๋ฒˆ์—ญ ๋Œ€์ƒ ์–ธ์–ด(source language)๋ฅผ ์„ค์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
```py
>>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
>>> chinese_text = "ไธ่ฆๆ’ๆ‰‹ๅทซๅธซ็š„ไบ‹ๅ‹™, ๅ› ็‚บไป–ๅ€‘ๆ˜ฏๅพฎๅฆ™็š„, ๅพˆๅฟซๅฐฑๆœƒ็™ผๆ€’."
>>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="zh")
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
```
๋ฌธ์žฅ์„ ํ† ํฐํ™”ํ•ฉ๋‹ˆ๋‹ค:
```py
>>> encoded_zh = tokenizer(chinese_text, return_tensors="pt")
```
M2M100์€ ๋ฒˆ์—ญ์„ ์ง„ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ์ฒซ ๋ฒˆ์งธ๋กœ ์ƒ์„ฑ๋˜๋Š” ํ† ํฐ์€ ๋ฒˆ์—ญํ•  ์–ธ์–ด(target language) ID๋กœ ๊ฐ•์ œ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค.
์˜์–ด๋กœ ๋ฒˆ์—ญํ•˜๊ธฐ ์œ„ํ•ด `generate` ๋ฉ”์†Œ๋“œ์—์„œ `forced_bos_token_id`๋ฅผ `en`์œผ๋กœ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค:
```py
>>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en"))
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
'Do not interfere with the matters of the witches, because they are delicate and will soon be angry.'
```
## MBart[[mbart]]
๋‹ค์Œ MBart ๋ชจ๋ธ ๋˜ํ•œ ๋‹ค๊ตญ์–ด ํƒœ์Šคํฌ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
- `facebook/mbart-large-50-one-to-many-mmt` (์ผ๋Œ€๋‹ค ๋‹ค๊ตญ์–ด ๋ฒˆ์—ญ, 50๊ฐœ ๊ตญ์–ด)
- `facebook/mbart-large-50-many-to-many-mmt` (๋‹ค๋Œ€๋‹ค ๋‹ค๊ตญ์–ด ๋ฒˆ์—ญ, 50๊ฐœ ๊ตญ์–ด)
- `facebook/mbart-large-50-many-to-one-mmt` (๋‹ค๋Œ€์ผ ๋‹ค๊ตญ์–ด ๋ฒˆ์—ญ, 50๊ฐœ ๊ตญ์–ด)
- `facebook/mbart-large-50` (๋‹ค๊ตญ์–ด ๋ฒˆ์—ญ, 50๊ฐœ ๊ตญ์–ด)
- `facebook/mbart-large-cc25`
์ด ์˜ˆ์ œ์—์„œ๋Š” ํ•€๋ž€๋“œ์–ด๋ฅผ ์˜์–ด๋กœ ๋ฒˆ์—ญํ•˜๊ธฐ ์œ„ํ•ด `facebook/mbart-large-50-many-to-many-mmt` ์ฒดํฌํฌ์ธํŠธ๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.
ํ† ํฌ๋‚˜์ด์ €์—์„œ ๋ฒˆ์—ญ ๋Œ€์ƒ ์–ธ์–ด(source language)๋ฅผ ์„ค์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
```py
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
>>> fi_text = "ร„lรค sekaannu velhojen asioihin, sillรค ne ovat hienovaraisia ja nopeasti vihaisia."
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="fi_FI")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
```
๋ฌธ์žฅ์„ ํ† ํฐํ™”ํ•ฉ๋‹ˆ๋‹ค:
```py
>>> encoded_en = tokenizer(en_text, return_tensors="pt")
```
MBart๋Š” ๋ฒˆ์—ญ์„ ์ง„ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ์ฒซ ๋ฒˆ์งธ๋กœ ์ƒ์„ฑ๋˜๋Š” ํ† ํฐ์€ ๋ฒˆ์—ญํ•  ์–ธ์–ด(target language) ID๋กœ ๊ฐ•์ œ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค.
์˜์–ด๋กœ ๋ฒˆ์—ญํ•˜๊ธฐ ์œ„ํ•ด `generate` ๋ฉ”์†Œ๋“œ์—์„œ `forced_bos_token_id`๋ฅผ `en`์œผ๋กœ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค:
```py
>>> generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.lang_code_to_id("en_XX"))
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
"Don't interfere with the wizard's affairs, because they are subtle, will soon get angry."
```
`facebook/mbart-large-50-many-to-one-mmt` ์ฒดํฌํฌ์ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋‹ค๋ฉด, ์ฒซ ๋ฒˆ์งธ๋กœ ์ƒ์„ฑ๋˜๋Š” ํ† ํฐ์„ ๋ฒˆ์—ญํ•  ์–ธ์–ด(target language) ID๋กœ ๊ฐ•์ œ ์ง€์ •ํ•  ํ•„์š”๋Š” ์—†์Šต๋‹ˆ๋‹ค.