File size: 6,405 Bytes
c7dec5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d984d9
 
 
 
 
 
 
 
 
 
c7dec5e
 
 
7d984d9
c7dec5e
7d984d9
c7dec5e
 
 
 
 
7d984d9
 
c7dec5e
7d984d9
c7dec5e
7d984d9
 
87f6406
7d984d9
 
87f6406
7d984d9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import pandas as pd
import numpy as np
import streamlit as st 
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
from PIL import Image
from streamlit_image_select import image_select
from tqdm import tqdm
import os
import shutil
from PIL import Image
import torch
import matplotlib.pyplot as plt
from datasets import load_dataset
from transformers import AutoProcessor, AutoModelForMaskGeneration

def show_mask(image, mask, ax=None):
    fig, axes = plt.subplots()
    axes.imshow(np.array(image))
    color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    axes.imshow(mask_image)
    canvas = FigureCanvasAgg(fig)
    canvas.draw()
    pil_image = Image.frombytes('RGB', canvas.get_width_height(), canvas.tostring_rgb())
    plt.close(fig) 
    return pil_image 
def get_bounding_box(ground_truth_map):
  y_indices, x_indices = np.where(ground_truth_map > 0)
  x_min, x_max = np.min(x_indices), np.max(x_indices)
  y_min, y_max = np.min(y_indices), np.max(y_indices)
  H, W = ground_truth_map.shape
  x_min = max(0, x_min - np.random.randint(0, 20))
  x_max = min(W, x_max + np.random.randint(0, 20))
  y_min = max(0, y_min - np.random.randint(0, 20))
  y_max = min(H, y_max + np.random.randint(0, 20))
  bbox = [x_min, y_min, x_max, y_max]
  return bbox
def get_output(image,prompt):
  inputs = processor(image,input_boxes=[[prompt]],return_tensors='pt').to(device)
  model.eval()
  with torch.no_grad():
    outputs = model(**inputs,multimask_output=False)
  output_proba = torch.sigmoid(outputs.pred_masks.squeeze(1))
  output_proba = output_proba.cpu().numpy().squeeze()
  output = (output_proba > 0.5).astype(np.uint8)
  return output
def generate_image(np_array):
  return Image.fromarray((np_array*255).astype('uint8'),mode='L')
def iou_calculation(result1, result2):
  intersection = np.logical_and(result1, result2)
  union = np.logical_or(result1, result2)
  iou_score = np.sum(intersection) / np.sum(union)
  iou_score = "{:.4f}".format(iou_score)
  return float(iou_score)
def calculate_pixel_accuracy(image1, image2):
    if image1.size != image2.size or image1.mode != image2.mode:
        image1 = image1.resize(image2.size, Image.BILINEAR)
        if image1.mode != image2.mode:
            image1 = image1.convert(image2.mode)
    width, height = image1.size
    total_pixels = width * height
    image1 = image1.convert("RGB")
    image2 = image2.convert("RGB")
    pixels1 = image1.load()
    pixels2 = image2.load()
    num_correct_pixels = 0
    for y in range(height):
        for x in range(width):
            if pixels1[x, y] == pixels2[x, y]:
                num_correct_pixels += 1
    accuracy = num_correct_pixels / total_pixels
    return accuracy
def calculate_f1_score(image1, image2):
    if image1.size != image2.size or image1.mode != image2.mode:
        image1 = image1.resize(image2.size, Image.BILINEAR)
        if image1.mode != image2.mode:
            image1 = image1.convert(image2.mode)
    width, height = image1.size
    image1 = image1.convert("L")
    image2 = image2.convert("L")
    np_image1 = np.array(image1)
    np_image2 = np.array(image2)
    np_image1_flat = np_image1.flatten()
    np_image2_flat = np_image2.flatten()
    true_positives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat == 255))
    false_positives = np.sum(np.logical_and(np_image1_flat != 255, np_image2_flat == 255))
    false_negatives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat != 255))
    precision = true_positives / (true_positives + false_positives + 1e-7)
    recall = true_positives / (true_positives + false_negatives + 1e-7)
    f1_score = 2 * (precision * recall) / (precision + recall + 1e-7)
    return f1_score
def calculate_dice_coefficient(image1, image2):
    if image1.size != image2.size or image1.mode != image2.mode:
        image1 = image1.resize(image2.size, Image.BILINEAR)
        if image1.mode != image2.mode:
            image1 = image1.convert(image2.mode)
    width, height = image1.size
    image1 = image1.convert("L")
    image2 = image2.convert("L")
    np_image1 = np.array(image1)
    np_image2 = np.array(image2)
    np_image1_flat = np_image1.flatten()
    np_image2_flat = np_image2.flatten()
    true_positives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat == 255))
    false_positives = np.sum(np.logical_and(np_image1_flat != 255, np_image2_flat == 255))
    false_negatives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat != 255))
    dice_coefficient = (2 * true_positives) / (2 * true_positives + false_positives + false_negatives)
    return dice_coefficient
device = "cuda" if torch.cuda.is_available() else "cpu"
st.set_page_config(layout='wide')
ds = load_dataset('ahishamm/combined_masks',split='train')
s1 = ds[3]['image']
s2 = ds[4]['image']
s3 = ds[5]['image']
s4 = ds[6]['image']
s1_label = ds[3]['label']
s2_label = ds[4]['label']
s3_label = ds[5]['label']
s4_label = ds[6]['label']
image_arr = [s1,s2,s3,s4]
label_arr = [s1_label,s2_label,s3_label,s4_label]
img = image_select(
    label="Select a Skin Lesion Image",
    images=[
        s1,s2,s3,s4
    ],
    captions=["sample 1","sample 2","sample 3","sample 4"],
    return_value='index'
)
processor = AutoProcessor.from_pretrained('ahishamm/skinsam')
model = AutoModelForMaskGeneration.from_pretrained('ahishamm/skinsam_focalloss_base_combined')
model.to(device)
p = get_bounding_box(np.array(label_arr[img])) 
predicted_mask_array = get_output(image_arr[img],p)
predicted_mask = generate_image(predicted_mask_array)
result_image = show_mask(image_arr[img],predicted_mask_array)
with st.container(): 
    tab1, tab2 = st.tabs(['Visualizations','Metrics'])
    with tab1: 
        col1, col2 = st.columns(2) 
        with col1: 
            st.image(image_arr[img],caption='Original Skin Lesion Image',use_column_width=True)
        with col2:
                st.image(result_image,caption='Mask Overlay',use_column_width=True)
    with tab2: 
            st.write(f'The IOU Score: {iou_calculation(label_arr[img],predicted_mask)}')
            st.write(f'The Pixel Accuracy: {calculate_pixel_accuracy(label_arr[img],predicted_mask)}')
            st.write(f'The Dice Coefficient Score: {calculate_dice_coefficient(label_arr[img],predicted_mask)}')