Spaces:
Sleeping
Sleeping
File size: 12,704 Bytes
5650753 adce4aa 5650753 b04ec71 5650753 b04ec71 5650753 adce4aa 5650753 adce4aa 5650753 adce4aa 5650753 adce4aa 5650753 dee91d0 5650753 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import gradio as gr
import tensorflow as tf
import pdfplumber
from transformers import pipeline
import timm
import torch
import pandas as pd
# Load pre-trained zero-shot model for text classification
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Pre-trained ResNet50 model for X-ray or image analysis
image_model = timm.create_model('resnet50', pretrained=True)
image_model.eval()
# Load saved TensorFlow eye disease detection model
#eye_model = tf.keras.models.load_model('model.h5')
# Patient database
patients_db = []
# Disease details for medical report analyzer
disease_details = {
"anemia": {
"medication": (
"Iron supplements (e.g., ferrous sulfate), "
"Vitamin B12 injections (for pernicious anemia), "
"Folic acid supplements."
),
"precaution": (
"Consume iron-rich foods like spinach, red meat, and lentils. "
"Pair iron-rich foods with vitamin C to enhance absorption. "
"Avoid tea or coffee with meals as they inhibit iron absorption."
),
"doctor": "Hematologist",
},
"viral infection": {
"medication": (
"Antiviral drugs (e.g., oseltamivir for flu, acyclovir for herpes). "
"Over-the-counter medications for symptom relief, such as ibuprofen for fever and body aches."
),
"precaution": (
"Stay hydrated by drinking plenty of fluids. "
"Isolate to prevent spreading the infection. "
"Rest adequately to support recovery. Maintain proper hygiene."
),
"doctor": "Infectious Disease Specialist",
},
"liver disease": {
"medication": (
"Hepatoprotective drugs (e.g., ursodeoxycholic acid, silymarin). "
"Antiviral therapy for viral hepatitis. "
"Diuretics for managing fluid retention (e.g., spironolactone)."
),
"precaution": (
"Avoid alcohol and hepatotoxic drugs. "
"Follow a low-fat diet and avoid processed foods. "
"Regularly monitor liver function tests."
),
"doctor": "Hepatologist",
},
"diabetes": {
"medication": (
"Oral hypoglycemics (e.g., metformin). "
"Insulin therapy for Type 1 diabetes or advanced Type 2 diabetes. "
"GLP-1 receptor agonists (e.g., liraglutide) for improving blood sugar control."
),
"precaution": (
"Monitor blood glucose levels daily. "
"Follow a low-carb, high-fiber diet. "
"Engage in regular physical activity. "
"Avoid sugary foods and beverages."
),
"doctor": "Endocrinologist",
},
"hypertension": {
"medication": (
"ACE inhibitors (e.g., lisinopril). "
"Beta-blockers (e.g., metoprolol). "
"Calcium channel blockers (e.g., amlodipine). "
"Diuretics (e.g., hydrochlorothiazide)."
),
"precaution": (
"Reduce salt intake to less than 2g per day. "
"Engage in at least 150 minutes of moderate exercise weekly. "
"Avoid smoking and excessive alcohol consumption. "
"Manage stress through relaxation techniques like yoga or meditation."
),
"doctor": "Cardiologist",
},
"pneumonia": {
"medication": (
"Antibiotics (e.g., amoxicillin or azithromycin for bacterial pneumonia). "
"Antiviral therapy if caused by viruses like influenza. "
"Supplemental oxygen in severe cases."
),
"precaution": (
"Get plenty of rest and stay hydrated. "
"Use a humidifier to ease breathing. "
"Avoid smoking or exposure to pollutants. "
"Ensure vaccination against influenza and pneumococcus."
),
"doctor": "Pulmonologist",
},
"asthma": {
"medication": (
"Short-acting bronchodilators (e.g., albuterol) for quick relief. "
"Inhaled corticosteroids (e.g., fluticasone) for long-term control. "
"Leukotriene receptor antagonists (e.g., montelukast) for reducing inflammation."
),
"precaution": (
"Avoid known allergens like pollen, dust, and pet dander. "
"Carry a rescue inhaler at all times. "
"Practice breathing exercises to strengthen lungs. "
"Avoid cold air or strenuous exercise without a warm-up."
),
"doctor": "Pulmonologist",
},
"kidney disease": {
"medication": (
"ACE inhibitors or ARBs (e.g., losartan) for controlling blood pressure. "
"Erythropoietin-stimulating agents for anemia management. "
"Phosphate binders (e.g., sevelamer) to manage high phosphate levels."
),
"precaution": (
"Limit salt, potassium, and phosphorus in the diet. "
"Stay hydrated but avoid overhydration. "
"Avoid NSAIDs and other nephrotoxic drugs. "
"Monitor kidney function and blood pressure regularly."
),
"doctor": "Nephrologist",
},
"thyroid disorder": {
"medication": (
"Levothyroxine for hypothyroidism. "
"Antithyroid medications (e.g., methimazole) for hyperthyroidism. "
"Beta-blockers for symptomatic relief in hyperthyroidism."
),
"precaution": (
"Ensure regular thyroid function tests. "
"Avoid foods that interfere with thyroid hormone absorption (e.g., soy, certain vegetables). "
"Follow medication schedules precisely without skipping doses."
),
"doctor": "Endocrinologist",
},
"arthritis": {
"medication": (
"Nonsteroidal anti-inflammatory drugs (NSAIDs) for pain relief. "
"Disease-modifying antirheumatic drugs (DMARDs) for rheumatoid arthritis. "
"Biologics (e.g., adalimumab) in severe cases."
),
"precaution": (
"Engage in low-impact exercises like swimming or yoga. "
"Use ergonomic furniture to reduce joint strain. "
"Maintain a healthy weight to reduce joint stress. "
"Apply heat or cold therapy for symptom relief."
),
"doctor": "Rheumatologist",
},
"depression": {
"medication": (
"Selective serotonin reuptake inhibitors (SSRIs, e.g., sertraline). "
"Serotonin-norepinephrine reuptake inhibitors (SNRIs, e.g., venlafaxine). "
"Tricyclic antidepressants (e.g., amitriptyline) in specific cases."
),
"precaution": (
"Engage in regular physical exercise. "
"Maintain a routine and avoid isolation. "
"Consider therapy (e.g., CBT or psychotherapy). "
"Avoid alcohol and recreational drugs."
),
"doctor": "Psychiatrist",
},
}
# Passwords
doctor_password = "doctor123"
# Functions
def register_patient(name, age, gender, password):
patient_id = len(patients_db) + 1
patients_db.append({
"ID": patient_id,
"Name": name,
"Age": age,
"Gender": gender,
"Password": password,
"Diagnosis": "",
"Medications": "",
"Precautions": "",
"Doctor": ""
})
return f"β
Patient {name} registered successfully. Patient ID: {patient_id}"
def analyze_report(patient_id, report_text):
candidate_labels = list(disease_details.keys())
result = classifier(report_text, candidate_labels)
diagnosis = result['labels'][0]
# Update patient's record
medication = disease_details[diagnosis]['medication']
precaution = disease_details[diagnosis]['precaution']
doctor = disease_details[diagnosis]['doctor']
for patient in patients_db:
if patient['ID'] == patient_id:
patient.update(Diagnosis=diagnosis, Medications=medication, Precautions=precaution, Doctor=doctor)
return f"π Diagnosis: {diagnosis}"
def extract_pdf_report(pdf):
text = ""
with pdfplumber.open(pdf.name) as pdf_file:
for page in pdf_file.pages:
text += page.extract_text()
return text
'''def predict_eye_disease(input_image):
input_image = tf.image.resize(input_image, [224, 224]) / 255.0
input_image = tf.expand_dims(input_image, 0)
predictions = eye_model.predict(input_image)
labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal']
confidence_scores = {labels[i]: round(predictions[0][i] * 100, 2) for i in range(len(labels))}
if confidence_scores['Normal'] > 50:
return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%"
return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()])
'''
def doctor_space(patient_id):
for patient in patients_db:
if patient["ID"] == patient_id:
return f"β Precautions: {patient['Precautions']}\nπ©ββ Recommended Doctor: {patient['Doctor']}"
return "β Patient not found. Please check the ID."
def pharmacist_space(patient_id):
for patient in patients_db:
if patient["ID"] == patient_id:
return f"π Medications: {patient['Medications']}"
return "β Patient not found. Please check the ID."
def patient_dashboard(patient_id, password):
for patient in patients_db:
if patient["ID"] == patient_id and patient["Password"] == password:
return (f"π©Ί Name: {patient['Name']}\n"
f"π Diagnosis: {patient['Diagnosis']}\n"
f"π Medications: {patient['Medications']}\n"
f"β Precautions: {patient['Precautions']}\n"
f"π©ββ Recommended Doctor: {patient['Doctor']}")
return "β Access Denied: Invalid ID or Password."
def doctor_dashboard(password):
if password != doctor_password:
return "β Access Denied: Incorrect Password"
if not patients_db:
return "No patient records available."
details = []
for patient in patients_db:
details.append(f"π©Ί Name: {patient['Name']}\n"
f"π Diagnosis: {patient['Diagnosis']}\n"
f"π Medications: {patient['Medications']}\n"
f"β Precautions: {patient['Precautions']}\n"
f"π©ββ Recommended Doctor: {patient['Doctor']}")
return "\n\n".join(details)
# Gradio Interfaces
registration_interface = gr.Interface(
fn=register_patient,
inputs=[
gr.Textbox(label="Patient Name"),
gr.Number(label="Age"),
gr.Radio(label="Gender", choices=["Male", "Female", "Other"]),
gr.Textbox(label="Set Password", type="password"),
],
outputs="text",
)
pdf_extraction_interface = gr.Interface(
fn=extract_pdf_report,
inputs=gr.File(label="Upload PDF Report"),
outputs="text",
)
report_analysis_interface = gr.Interface(
fn=analyze_report,
inputs=[
gr.Number(label="Patient ID"),
gr.Textbox(label="Report Text"),
],
outputs="text",
)
'''eye_disease_interface = gr.Interface(
fn=predict_eye_disease,
inputs=gr.Image(label="Upload an Eye Image", type="numpy"),
outputs="text",
)
'''
doctor_space_interface = gr.Interface(
fn=doctor_space,
inputs=gr.Number(label="Patient ID"),
outputs="text",
)
pharmacist_space_interface = gr.Interface(
fn=pharmacist_space,
inputs=gr.Number(label="Patient ID"),
outputs="text",
)
patient_dashboard_interface = gr.Interface(
fn=patient_dashboard,
inputs=[
gr.Number(label="Patient ID"),
gr.Textbox(label="Password", type="password"),
],
outputs="text",
)
doctor_dashboard_interface = gr.Interface(
fn=doctor_dashboard,
inputs=gr.Textbox(label="Doctor Password", type="password"),
outputs="text",
)
# Gradio App Layout
with gr.Blocks() as app:
gr.Markdown("# Medico GPT")
with gr.Tab("Patient Registration"):
registration_interface.render()
with gr.Tab("Analyze Medical Report"):
report_analysis_interface.render()
with gr.Tab("Extract PDF Report"):
pdf_extraction_interface.render()
with gr.Tab("Doctor Space"):
doctor_space_interface.render()
with gr.Tab("Pharmacist Space"):
pharmacist_space_interface.render()
with gr.Tab("Patient Dashboard"):
patient_dashboard_interface.render()
with gr.Tab("Doctor Dashboard"):
doctor_dashboard_interface.render()
app.launch(share=True) |