Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import pdfplumber
|
4 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
5 |
-
import timm
|
6 |
-
import torch
|
7 |
-
import pandas as pd
|
8 |
|
9 |
-
# Load
|
10 |
-
|
|
|
11 |
|
12 |
-
#
|
13 |
-
image_model = timm.create_model('resnet50', pretrained=True)
|
14 |
-
image_model.eval()
|
15 |
-
|
16 |
-
# Load saved TensorFlow eye disease detection model
|
17 |
-
eye_model = tf.keras.models.load_model('model.h5')
|
18 |
-
|
19 |
-
# Load NeuraMedAW model and tokenizer
|
20 |
-
tokenizer = AutoTokenizer.from_pretrained("ahmed-7124/NeuraMedAW")
|
21 |
-
model = AutoModelForCausalLM.from_pretrained("ahmed-7124/NeuraMedAW")
|
22 |
-
|
23 |
-
# Patient database
|
24 |
patients_db = []
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
|
|
|
|
|
36 |
|
37 |
-
#
|
38 |
def register_patient(name, age, gender, password):
|
39 |
patient_id = len(patients_db) + 1
|
40 |
patients_db.append({
|
@@ -50,81 +37,16 @@ def register_patient(name, age, gender, password):
|
|
50 |
})
|
51 |
return f"β
Patient {name} registered successfully. Patient ID: {patient_id}"
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
doctor = disease_details[diagnosis]['doctor']
|
62 |
-
for patient in patients_db:
|
63 |
-
if patient['ID'] == patient_id:
|
64 |
-
patient.update(Diagnosis=diagnosis, Medications=medication, Precautions=precaution, Doctor=doctor)
|
65 |
-
return f"π Diagnosis: {diagnosis}"
|
66 |
-
|
67 |
-
def extract_pdf_report(pdf):
|
68 |
-
text = ""
|
69 |
-
with pdfplumber.open(pdf.name) as pdf_file:
|
70 |
-
for page in pdf_file.pages:
|
71 |
-
text += page.extract_text()
|
72 |
-
return text
|
73 |
-
|
74 |
-
def predict_eye_disease(input_image):
|
75 |
-
input_image = tf.image.resize(input_image, [224, 224]) / 255.0
|
76 |
-
input_image = tf.expand_dims(input_image, 0)
|
77 |
-
predictions = eye_model.predict(input_image)
|
78 |
-
labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal']
|
79 |
-
confidence_scores = {labels[i]: round(predictions[0][i] * 100, 2) for i in range(len(labels))}
|
80 |
-
if confidence_scores['Normal'] > 50:
|
81 |
-
return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%"
|
82 |
-
return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()])
|
83 |
-
|
84 |
-
def doctor_space(patient_id):
|
85 |
-
for patient in patients_db:
|
86 |
-
if patient["ID"] == patient_id:
|
87 |
-
return f"β οΈ Precautions: {patient['Precautions']}\nπ©ββοΈ Recommended Doctor: {patient['Doctor']}"
|
88 |
-
return "β Patient not found. Please check the ID."
|
89 |
-
|
90 |
-
def pharmacist_space(patient_id):
|
91 |
-
for patient in patients_db:
|
92 |
-
if patient["ID"] == patient_id:
|
93 |
-
return f"π Medications: {patient['Medications']}"
|
94 |
-
return "β Patient not found. Please check the ID."
|
95 |
-
|
96 |
-
def patient_dashboard(patient_id, password):
|
97 |
-
for patient in patients_db:
|
98 |
-
if patient["ID"] == patient_id and patient["Password"] == password:
|
99 |
-
return (f"π©Ί Name: {patient['Name']}\n"
|
100 |
-
f"π Diagnosis: {patient['Diagnosis']}\n"
|
101 |
-
f"π Medications: {patient['Medications']}\n"
|
102 |
-
f"β οΈ Precautions: {patient['Precautions']}\n"
|
103 |
-
f"π©ββοΈ Recommended Doctor: {patient['Doctor']}")
|
104 |
-
return "β Access Denied: Invalid ID or Password."
|
105 |
-
|
106 |
-
def doctor_dashboard(password):
|
107 |
-
if password != doctor_password:
|
108 |
-
return "β Access Denied: Incorrect Password"
|
109 |
-
if not patients_db:
|
110 |
-
return "No patient records available."
|
111 |
-
details = []
|
112 |
-
for patient in patients_db:
|
113 |
-
details.append(f"π©Ί Name: {patient['Name']}\n"
|
114 |
-
f"π Diagnosis: {patient['Diagnosis']}\n"
|
115 |
-
f"π Medications: {patient['Medications']}\n"
|
116 |
-
f"β οΈ Precautions: {patient['Precautions']}\n"
|
117 |
-
f"π©ββοΈ Recommended Doctor: {patient['Doctor']}")
|
118 |
-
return "\n\n".join(details)
|
119 |
-
|
120 |
-
def doctor_consultant(patient_query):
|
121 |
-
# Combine both models for a more comprehensive answer
|
122 |
-
inputs = tokenizer(patient_query, return_tensors="pt")
|
123 |
-
output = model.generate(**inputs, max_length=500)
|
124 |
-
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
125 |
-
return response
|
126 |
|
127 |
-
# Gradio
|
128 |
registration_interface = gr.Interface(
|
129 |
fn=register_patient,
|
130 |
inputs=[
|
@@ -136,60 +58,6 @@ registration_interface = gr.Interface(
|
|
136 |
outputs="text",
|
137 |
)
|
138 |
|
139 |
-
pdf_extraction_interface = gr.Interface(
|
140 |
-
fn=extract_pdf_report,
|
141 |
-
inputs=gr.File(label="Upload PDF Report"),
|
142 |
-
outputs="text",
|
143 |
-
)
|
144 |
-
|
145 |
-
report_analysis_interface = gr.Interface(
|
146 |
-
fn=analyze_report,
|
147 |
-
inputs=[
|
148 |
-
gr.Number(label="Patient ID"),
|
149 |
-
gr.Textbox(label="Report Text"),
|
150 |
-
],
|
151 |
-
outputs="text",
|
152 |
-
)
|
153 |
-
|
154 |
-
eye_disease_interface = gr.Interface(
|
155 |
-
fn=predict_eye_disease,
|
156 |
-
inputs=gr.Image(label="Upload an Eye Image", type="numpy"),
|
157 |
-
outputs="text",
|
158 |
-
)
|
159 |
-
|
160 |
-
doctor_space_interface = gr.Interface(
|
161 |
-
fn=doctor_space,
|
162 |
-
inputs=gr.Number(label="Patient ID"),
|
163 |
-
outputs="text",
|
164 |
-
)
|
165 |
-
|
166 |
-
pharmacist_space_interface = gr.Interface(
|
167 |
-
fn=pharmacist_space,
|
168 |
-
inputs=gr.Number(label="Patient ID"),
|
169 |
-
outputs="text",
|
170 |
-
)
|
171 |
-
|
172 |
-
patient_dashboard_interface = gr.Interface(
|
173 |
-
fn=patient_dashboard,
|
174 |
-
inputs=[
|
175 |
-
gr.Number(label="Patient ID"),
|
176 |
-
gr.Textbox(label="Password", type="password"),
|
177 |
-
],
|
178 |
-
outputs="text",
|
179 |
-
)
|
180 |
-
|
181 |
-
doctor_dashboard_interface = gr.Interface(
|
182 |
-
fn=doctor_dashboard,
|
183 |
-
inputs=gr.Textbox(label="Doctor Password", type="password"),
|
184 |
-
outputs="text",
|
185 |
-
)
|
186 |
-
|
187 |
-
doctor_consultant_interface = gr.Interface(
|
188 |
-
fn=doctor_consultant,
|
189 |
-
inputs=gr.Textbox(label="Ask the Doctor a Question"),
|
190 |
-
outputs="text",
|
191 |
-
)
|
192 |
-
|
193 |
# Gradio App Layout
|
194 |
with gr.Blocks() as app:
|
195 |
gr.Markdown("# Medico GPT")
|
@@ -197,28 +65,7 @@ with gr.Blocks() as app:
|
|
197 |
with gr.Tab("Patient Registration"):
|
198 |
registration_interface.render()
|
199 |
|
200 |
-
with gr.Tab("
|
201 |
-
|
202 |
-
|
203 |
-
with gr.Tab("Extract PDF Report"):
|
204 |
-
pdf_extraction_interface.render()
|
205 |
-
|
206 |
-
with gr.Tab("Ophthalmologist Space"):
|
207 |
-
eye_disease_interface.render()
|
208 |
-
|
209 |
-
with gr.Tab("Doctor Space"):
|
210 |
-
doctor_space_interface.render()
|
211 |
-
|
212 |
-
with gr.Tab("Pharmacist Space"):
|
213 |
-
pharmacist_space_interface.render()
|
214 |
-
|
215 |
-
with gr.Tab("Patient Dashboard"):
|
216 |
-
patient_dashboard_interface.render()
|
217 |
-
|
218 |
-
with gr.Tab("Doctor Dashboard"):
|
219 |
-
doctor_dashboard_interface.render()
|
220 |
-
|
221 |
-
with gr.Tab("Doctor Consultant"):
|
222 |
-
doctor_consultant_interface.render()
|
223 |
|
224 |
app.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Load the PastelMed model and tokenizer
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("harishussain12/PastelMed")
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("harishussain12/PastelMed")
|
7 |
|
8 |
+
# Patient database (example, can be expanded)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
patients_db = []
|
10 |
|
11 |
+
# Doctor's assistant function
|
12 |
+
def doctor_assistant(question):
|
13 |
+
# Encode the input question
|
14 |
+
inputs = tokenizer(question, return_tensors="pt")
|
15 |
+
|
16 |
+
# Generate a response from the model
|
17 |
+
outputs = model.generate(inputs["input_ids"], max_length=200, num_return_sequences=1)
|
18 |
+
|
19 |
+
# Decode the generated response
|
20 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
|
22 |
+
return response
|
23 |
|
24 |
+
# Function to register a patient (simplified version)
|
25 |
def register_patient(name, age, gender, password):
|
26 |
patient_id = len(patients_db) + 1
|
27 |
patients_db.append({
|
|
|
37 |
})
|
38 |
return f"β
Patient {name} registered successfully. Patient ID: {patient_id}"
|
39 |
|
40 |
+
# Gradio Interface for Doctor Assistance
|
41 |
+
doctor_assistant_interface = gr.Interface(
|
42 |
+
fn=doctor_assistant,
|
43 |
+
inputs=gr.Textbox(label="Ask a Question to the Doctor Assistant"),
|
44 |
+
outputs="text",
|
45 |
+
title="Doctor Assistant",
|
46 |
+
description="Ask the assistant for medical advice and it will generate a response based on the PastelMed model."
|
47 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Gradio Interface for Patient Registration (for testing)
|
50 |
registration_interface = gr.Interface(
|
51 |
fn=register_patient,
|
52 |
inputs=[
|
|
|
58 |
outputs="text",
|
59 |
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
# Gradio App Layout
|
62 |
with gr.Blocks() as app:
|
63 |
gr.Markdown("# Medico GPT")
|
|
|
65 |
with gr.Tab("Patient Registration"):
|
66 |
registration_interface.render()
|
67 |
|
68 |
+
with gr.Tab("Doctor Assistant"):
|
69 |
+
doctor_assistant_interface.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
app.launch(share=True)
|