File size: 8,842 Bytes
8df396a
 
afd3d9f
0f8851c
afd3d9f
030af93
 
8df396a
4f6f95c
 
8df396a
4f6f95c
afd3d9f
 
 
ca891f7
 
 
 
e8a12b5
afd3d9f
8df396a
 
 
 
 
f2b1e48
 
 
 
8df396a
 
030af93
 
 
4f6f95c
e218653
4f6f95c
8e73ae2
e218653
 
8e73ae2
e218653
8e73ae2
1d09b2b
 
b804667
 
 
1d09b2b
 
4f6f95c
 
f2b1e48
8df396a
 
 
 
 
 
f2b1e48
8df396a
 
1f303f9
 
8df396a
1d09b2b
8df396a
8e73ae2
 
 
 
 
 
 
 
 
 
8df396a
 
 
 
 
 
 
1f303f9
8df396a
 
1f303f9
8e73ae2
8df396a
8e73ae2
 
 
 
 
 
 
09a4c0c
e8a12b5
 
 
 
 
 
 
 
 
030af93
 
 
 
1d09b2b
 
030af93
 
 
 
1d09b2b
 
030af93
 
 
 
1d09b2b
 
 
 
 
 
030af93
 
 
1d09b2b
030af93
 
 
 
1d09b2b
 
 
 
 
030af93
 
0e1fd0a
 
 
9c593fe
0e1fd0a
 
 
 
 
 
 
 
b4f0dee
 
 
 
 
0e1fd0a
8e73ae2
 
 
 
 
 
 
 
 
 
 
 
 
0e1fd0a
9711794
 
0e1fd0a
 
 
 
e8a12b5
 
 
 
 
0e1fd0a
 
 
 
 
 
 
 
 
 
 
 
124f9a0
0e1fd0a
 
9c593fe
0e1fd0a
 
 
 
 
124f9a0
0e1fd0a
 
 
124f9a0
 
 
1d09b2b
 
 
0f8851c
 
 
8df396a
205a28b
 
1d09b2b
205a28b
030af93
1d09b2b
8e73ae2
 
1c59abf
8e73ae2
1d09b2b
0b6b50a
030af93
1d09b2b
e8a12b5
 
1d09b2b
030af93
 
1d09b2b
030af93
 
1d09b2b
030af93
 
1d09b2b
030af93
 
8df396a
0f8851c
1d09b2b
0f8851c
9c593fe
0f8851c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import gradio as gr
import tensorflow as tf
import pdfplumber
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import timm
import torch
import pandas as pd

# Load pre-trained zero-shot model for text classification (using PyTorch for compatibility)
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli", framework="pt")

# Pre-trained ResNet50 model for X-ray or image analysis using Timm
image_model = timm.create_model('resnet50', pretrained=True)
image_model.eval()

from tensorflow import keras
from tensorflow.keras.layers import TFSMLayer

# Load the model as a layer (in the SavedModel format)
#eye_model = TFSMLayer('model.h5')

# Patient database
patients_db = []

# Disease details for medical report analyzer
disease_details = {
    "anemia": {"medication": "Iron supplements", "precaution": "Eat iron-rich foods", "doctor": "Hematologist"},
    "viral infection": {"medication": "Antiviral drugs", "precaution": "Stay hydrated", "doctor": "Infectious Disease Specialist"},
    "liver disease": {"medication": "Hepatoprotective drugs", "precaution": "Avoid alcohol", "doctor": "Hepatologist"},
    "diabetes": {"medication": "Metformin or insulin", "precaution": "Monitor sugar levels", "doctor": "Endocrinologist"},
}

# Passwords
doctor_password = "doctor123"

# Loading the custom model for consultation with the doctor
try:
    # Force using the slow tokenizer for compatibility
    tokenizer = AutoTokenizer.from_pretrained("ahmed-7124/NeuraMedAW", use_fast=False)
except Exception as e:
    print(f"Tokenizer error: {e}")
    tokenizer = AutoTokenizer.from_pretrained("ahmed-7124/NeuraMedAW", use_fast=False)

model = AutoModelForCausalLM.from_pretrained("ahmed-7124/NeuraMedAW")

def consult_doctor(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=100)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# Functions for the app

def register_patient(name, age, gender, password):
    patient_id = len(patients_db) + 1
    patients_db.append({
        "ID": patient_id,
        "Name": name,
        "Age": age,
        "Gender": gender,
        "Password": password,
        "Diagnosis": "",
        "Medications": "",
        "Precautions": "",
        "Doctor": ""
    })
    return f"βœ… Patient {name} registered successfully. Patient ID: {patient_id}"

def analyze_or_extract_report(patient_id, pdf=None, report_text=None):
    if pdf:
        # Extract text from PDF
        with pdfplumber.open(pdf.name) as pdf_file:
            report_text = "".join([page.extract_text() for page in pdf_file.pages])
    
    if not report_text:
        return "❌ Please provide a report text or upload a PDF."

    # Analyze the report
    candidate_labels = list(disease_details.keys())
    result = classifier(report_text, candidate_labels)
    diagnosis = result['labels'][0]

    # Update patient's record
    medication = disease_details[diagnosis]['medication']
    precaution = disease_details[diagnosis]['precaution']
    doctor = disease_details[diagnosis]['doctor']
    for patient in patients_db:
        if patient['ID'] == patient_id:
            patient.update(Diagnosis=diagnosis, Medications=medication, Precautions=precaution, Doctor=doctor)
    return f"πŸ” Diagnosis: {diagnosis}\nπŸ’Š Medication: {medication}\n⚠ Precaution: {precaution}\nπŸ‘©β€βš• Recommended Doctor: {doctor}"


# def extract_pdf_report(pdf):
#     text = ""
#     with pdfplumber.open(pdf.name) as pdf_file:
#         for page in pdf_file.pages:
#             text += page.extract_text()
#     return text
#
# def predict_eye_disease(input_image):
#     input_image = tf.image.resize(input_image, [224, 224]) / 255.0
#     input_image = tf.expand_dims(input_image, 0)
#     predictions = eye_model(input_image)
#     labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal']
#     confidence_scores = {labels[i]: round(predictions[i] * 100, 2) for i in range(len(labels))}
#     if confidence_scores['Normal'] > 50:
#         return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%"
#     return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()])

def doctor_space(patient_id):
    for patient in patients_db:
        if patient["ID"] == patient_id:
            return f"⚠ Precautions: {patient['Precautions']}\nπŸ‘©β€βš• Recommended Doctor: {patient['Doctor']}"
    return "❌ Patient not found. Please check the ID."

def pharmacist_space(patient_id):
    for patient in patients_db:
        if patient["ID"] == patient_id:
            return f"πŸ’Š Medications: {patient['Medications']}"
    return "❌ Patient not found. Please check the ID."

def patient_dashboard(patient_id, password):
    for patient in patients_db:
        if patient["ID"] == patient_id and patient["Password"] == password:
            return (f"🩺 Name: {patient['Name']}\n"
                    f"πŸ“‹ Diagnosis: {patient['Diagnosis']}\n"
                    f"πŸ’Š Medications: {patient['Medications']}\n"
                    f"⚠ Precautions: {patient['Precautions']}\n"
                    f"πŸ‘©β€βš• Recommended Doctor: {patient['Doctor']}")
    return "❌ Access Denied: Invalid ID or Password."

def doctor_dashboard(password):
    if password != doctor_password:
        return "❌ Access Denied: Incorrect Password"
    if not patients_db:
        return "No patient records available."
    details = []
    for patient in patients_db:
        details.append(f"🩺 Name: {patient['Name']}\n"
                       f"πŸ“‹ Diagnosis: {patient['Diagnosis']}\n"
                       f"πŸ’Š Medications: {patient['Medications']}\n"
                       f"⚠ Precautions: {patient['Precautions']}\n"
                       f"πŸ‘©β€βš• Recommended Doctor: {patient['Doctor']}")
    return "\n\n".join(details)

# Gradio Interfaces
registration_interface = gr.Interface(
    fn=register_patient,
    inputs=[ 
        gr.Textbox(label="Patient Name"),
        gr.Number(label="Age"),
        gr.Radio(label="Gender", choices=["Male", "Female", "Other"]),
        gr.Textbox(label="Set Password", type="password"),
    ],
    outputs="text",
)

#pdf_extraction_interface = gr.Interface(
 #   fn=extract_pdf_report,
  #  inputs=gr.File(label="Upload PDF Report"),
   # outputs="text",
#)

# report_analysis_interface = gr.Interface(
#     fn=analyze_report,
#     inputs=[ 
#         gr.Number(label="Patient ID"),
#         gr.Textbox(label="Report Text"),
#     ],
#     outputs="text",
# )

# Unified Gradio Interface
analyze_report_interface = gr.Interface(
    fn=analyze_or_extract_report,
    inputs=[
        gr.Number(label="Patient ID"),
        gr.File(label="Upload PDF Report"),  # Removed optional=True
        gr.Textbox(label="Report Text (Optional)"),
    ],
    outputs="text",
)

# eye_disease_interface = gr.Interface(
#     fn=predict_eye_disease,
#     inputs=gr.Image(label="Upload an Eye Image", type="numpy"),
#     outputs="text",
# )

doctor_space_interface = gr.Interface(
    fn=doctor_space,
    inputs=gr.Number(label="Patient ID"),
    outputs="text",
)

pharmacist_space_interface = gr.Interface(
    fn=pharmacist_space,
    inputs=gr.Number(label="Patient ID"),
    outputs="text",
)

patient_dashboard_interface = gr.Interface(
    fn=patient_dashboard,
    inputs=[ 
        gr.Number(label="Patient ID"),
        gr.Textbox(label="Password", type="password"),
    ],
    outputs="text",
)

doctor_dashboard_interface = gr.Interface(
    fn=doctor_dashboard,
    inputs=gr.Textbox(label="Doctor Password", type="password"),
    outputs="text",
)

consult_doctor_interface = gr.Interface(
    fn=consult_doctor,
    inputs=gr.Textbox(label="Enter Your Query for the Doctor"),
    outputs="text",
)

# Gradio App Layout
with gr.Blocks() as app:
    gr.Markdown("# Medico GPT")
    
    with gr.Tab("Patient Registration"):
        registration_interface.render()
    
    # with gr.Tab("Analyze Medical Report"):
    #     report_analysis_interface.render()
    with gr.Tab("Analyze Medical Report"):
        analyze_report_interface.render()
    
    with gr.Tab("Extract PDF Report"):
        pdf_extraction_interface.render()
    
    # with gr.Tab("Ophthalmologist Space"):
    #     eye_disease_interface.render()
    
    with gr.Tab("Doctor Space"):
        doctor_space_interface.render()
    
    with gr.Tab("Pharmacist Space"):
        pharmacist_space_interface.render()
    
    with gr.Tab("Patient Dashboard"):
        patient_dashboard_interface.render()
    
    with gr.Tab("Doctor Dashboard"):
        doctor_dashboard_interface.render()

    with gr.Tab("Doctor Consult"):
        consult_doctor_interface.render()

# Launch the app
app.launch(share=True)