Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import pdfplumber | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
import timm | |
import torch | |
import pandas as pd | |
# Load pre-trained zero-shot model for text classification | |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
# Pre-trained ResNet50 model for X-ray or image analysis | |
image_model = timm.create_model('resnet50', pretrained=True) | |
image_model.eval() | |
# Load saved TensorFlow eye disease detection model (TensorFlow Model without Keras) | |
eye_model = tf.saved_model.load('model') | |
# Patient database | |
patients_db = [] | |
# Disease details for medical report analyzer | |
disease_details = { | |
"anemia": {"medication": "Iron supplements", "precaution": "Eat iron-rich foods", "doctor": "Hematologist"}, | |
"viral infection": {"medication": "Antiviral drugs", "precaution": "Stay hydrated", "doctor": "Infectious Disease Specialist"}, | |
"liver disease": {"medication": "Hepatoprotective drugs", "precaution": "Avoid alcohol", "doctor": "Hepatologist"}, | |
"diabetes": {"medication": "Metformin or insulin", "precaution": "Monitor sugar levels", "doctor": "Endocrinologist"}, | |
} | |
# Passwords | |
doctor_password = "doctor123" | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
try: | |
# Force using the slow tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("harishussain12/PastelMed", use_fast=False) | |
except Exception as e: | |
print(f"Tokenizer error: {e}") | |
tokenizer = AutoTokenizer.from_pretrained("harishussain12/PastelMed", use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained("harishussain12/PastelMed") | |
def consult_doctor(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=100) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Functions | |
def register_patient(name, age, gender, password): | |
patient_id = len(patients_db) + 1 | |
patients_db.append({ | |
"ID": patient_id, | |
"Name": name, | |
"Age": age, | |
"Gender": gender, | |
"Password": password, | |
"Diagnosis": "", | |
"Medications": "", | |
"Precautions": "", | |
"Doctor": "" | |
}) | |
return f"β Patient {name} registered successfully. Patient ID: {patient_id}" | |
def analyze_report(patient_id, report_text): | |
candidate_labels = list(disease_details.keys()) | |
result = classifier(report_text, candidate_labels) | |
diagnosis = result['labels'][0] | |
# Update patient's record | |
medication = disease_details[diagnosis]['medication'] | |
precaution = disease_details[diagnosis]['precaution'] | |
doctor = disease_details[diagnosis]['doctor'] | |
for patient in patients_db: | |
if patient['ID'] == patient_id: | |
patient.update(Diagnosis=diagnosis, Medications=medication, Precautions=precaution, Doctor=doctor) | |
return f"π Diagnosis: {diagnosis}" | |
def extract_pdf_report(pdf): | |
text = "" | |
with pdfplumber.open(pdf.name) as pdf_file: | |
for page in pdf_file.pages: | |
text += page.extract_text() | |
return text | |
def predict_eye_disease(input_image): | |
input_image = tf.image.resize(input_image, [224, 224]) / 255.0 | |
input_image = tf.expand_dims(input_image, 0) | |
predictions = eye_model(input_image) | |
labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal'] | |
confidence_scores = {labels[i]: round(predictions[i] * 100, 2) for i in range(len(labels))} | |
if confidence_scores['Normal'] > 50: | |
return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%" | |
return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()]) | |
def doctor_space(patient_id): | |
for patient in patients_db: | |
if patient["ID"] == patient_id: | |
return f"β Precautions: {patient['Precautions']}\nπ©ββ Recommended Doctor: {patient['Doctor']}" | |
return "β Patient not found. Please check the ID." | |
def pharmacist_space(patient_id): | |
for patient in patients_db: | |
if patient["ID"] == patient_id: | |
return f"π Medications: {patient['Medications']}" | |
return "β Patient not found. Please check the ID." | |
def patient_dashboard(patient_id, password): | |
for patient in patients_db: | |
if patient["ID"] == patient_id and patient["Password"] == password: | |
return (f"π©Ί Name: {patient['Name']}\n" | |
f"π Diagnosis: {patient['Diagnosis']}\n" | |
f"π Medications: {patient['Medications']}\n" | |
f"β Precautions: {patient['Precautions']}\n" | |
f"π©ββ Recommended Doctor: {patient['Doctor']}") | |
return "β Access Denied: Invalid ID or Password." | |
def doctor_dashboard(password): | |
if password != doctor_password: | |
return "β Access Denied: Incorrect Password" | |
if not patients_db: | |
return "No patient records available." | |
details = [] | |
for patient in patients_db: | |
details.append(f"π©Ί Name: {patient['Name']}\n" | |
f"π Diagnosis: {patient['Diagnosis']}\n" | |
f"π Medications: {patient['Medications']}\n" | |
f"β Precautions: {patient['Precautions']}\n" | |
f"π©ββ Recommended Doctor: {patient['Doctor']}") | |
return "\n\n".join(details) | |
# Gradio Interfaces | |
registration_interface = gr.Interface( | |
fn=register_patient, | |
inputs=[ | |
gr.Textbox(label="Patient Name"), | |
gr.Number(label="Age"), | |
gr.Radio(label="Gender", choices=["Male", "Female", "Other"]), | |
gr.Textbox(label="Set Password", type="password"), | |
], | |
outputs="text", | |
) | |
pdf_extraction_interface = gr.Interface( | |
fn=extract_pdf_report, | |
inputs=gr.File(label="Upload PDF Report"), | |
outputs="text", | |
) | |
report_analysis_interface = gr.Interface( | |
fn=analyze_report, | |
inputs=[ | |
gr.Number(label="Patient ID"), | |
gr.Textbox(label="Report Text"), | |
], | |
outputs="text", | |
) | |
eye_disease_interface = gr.Interface( | |
fn=predict_eye_disease, | |
inputs=gr.Image(label="Upload an Eye Image", type="numpy"), | |
outputs="text", | |
) | |
doctor_space_interface = gr.Interface( | |
fn=doctor_space, | |
inputs=gr.Number(label="Patient ID"), | |
outputs="text", | |
) | |
pharmacist_space_interface = gr.Interface( | |
fn=pharmacist_space, | |
inputs=gr.Number(label="Patient ID"), | |
outputs="text", | |
) | |
patient_dashboard_interface = gr.Interface( | |
fn=patient_dashboard, | |
inputs=[ | |
gr.Number(label="Patient ID"), | |
gr.Textbox(label="Password", type="password"), | |
], | |
outputs="text", | |
) | |
doctor_dashboard_interface = gr.Interface( | |
fn=doctor_dashboard, | |
inputs=gr.Textbox(label="Doctor Password", type="password"), | |
outputs="text", | |
) | |
consult_doctor_interface = gr.Interface( | |
fn=consult_doctor, | |
inputs=gr.Textbox(label="Enter Your Query for the Doctor"), | |
outputs="text", | |
) | |
# Gradio App Layout | |
with gr.Blocks() as app: | |
gr.Markdown("# Medico GPT") | |
with gr.Tab("Patient Registration"): | |
registration_interface.render() | |
with gr.Tab("Analyze Medical Report"): | |
report_analysis_interface.render() | |
with gr.Tab("Extract PDF Report"): | |
pdf_extraction_interface.render() | |
with gr.Tab("Ophthalmologist Space"): | |
eye_disease_interface.render() | |
with gr.Tab("Doctor Space"): | |
doctor_space_interface.render() | |
with gr.Tab("Pharmacist Space"): | |
pharmacist_space_interface.render() | |
with gr.Tab("Patient Dashboard"): | |
patient_dashboard_interface.render() | |
with gr.Tab("Doctor Dashboard"): | |
doctor_dashboard_interface.render() | |
with gr.Tab("Doctor Consult"): | |
consult_doctor_interface.render() | |
# Launch the app | |
app.launch(share=True) | |