MedicoGPT / app.py
ahmed-7124's picture
Update app.py
ba7185a verified
raw
history blame
7.83 kB
import gradio as gr
import tensorflow as tf
import pdfplumber
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import timm
import torch
import pandas as pd
# Load pre-trained zero-shot model for text classification
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Pre-trained ResNet50 model for X-ray or image analysis
image_model = timm.create_model('resnet50', pretrained=True)
image_model.eval()
# Load saved TensorFlow eye disease detection model (TensorFlow Model without Keras)
eye_model = tf.saved_model.load('model')
# Patient database
patients_db = []
# Disease details for medical report analyzer
disease_details = {
"anemia": {"medication": "Iron supplements", "precaution": "Eat iron-rich foods", "doctor": "Hematologist"},
"viral infection": {"medication": "Antiviral drugs", "precaution": "Stay hydrated", "doctor": "Infectious Disease Specialist"},
"liver disease": {"medication": "Hepatoprotective drugs", "precaution": "Avoid alcohol", "doctor": "Hepatologist"},
"diabetes": {"medication": "Metformin or insulin", "precaution": "Monitor sugar levels", "doctor": "Endocrinologist"},
}
# Passwords
doctor_password = "doctor123"
from transformers import AutoTokenizer, AutoModelForCausalLM
try:
# Force using the slow tokenizer
tokenizer = AutoTokenizer.from_pretrained("harishussain12/PastelMed", use_fast=False)
except Exception as e:
print(f"Tokenizer error: {e}")
tokenizer = AutoTokenizer.from_pretrained("harishussain12/PastelMed", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("harishussain12/PastelMed")
def consult_doctor(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Functions
def register_patient(name, age, gender, password):
patient_id = len(patients_db) + 1
patients_db.append({
"ID": patient_id,
"Name": name,
"Age": age,
"Gender": gender,
"Password": password,
"Diagnosis": "",
"Medications": "",
"Precautions": "",
"Doctor": ""
})
return f"βœ… Patient {name} registered successfully. Patient ID: {patient_id}"
def analyze_report(patient_id, report_text):
candidate_labels = list(disease_details.keys())
result = classifier(report_text, candidate_labels)
diagnosis = result['labels'][0]
# Update patient's record
medication = disease_details[diagnosis]['medication']
precaution = disease_details[diagnosis]['precaution']
doctor = disease_details[diagnosis]['doctor']
for patient in patients_db:
if patient['ID'] == patient_id:
patient.update(Diagnosis=diagnosis, Medications=medication, Precautions=precaution, Doctor=doctor)
return f"πŸ” Diagnosis: {diagnosis}"
def extract_pdf_report(pdf):
text = ""
with pdfplumber.open(pdf.name) as pdf_file:
for page in pdf_file.pages:
text += page.extract_text()
return text
def predict_eye_disease(input_image):
input_image = tf.image.resize(input_image, [224, 224]) / 255.0
input_image = tf.expand_dims(input_image, 0)
predictions = eye_model(input_image)
labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal']
confidence_scores = {labels[i]: round(predictions[i] * 100, 2) for i in range(len(labels))}
if confidence_scores['Normal'] > 50:
return f"Congrats! No disease detected. Confidence: {confidence_scores['Normal']}%"
return "\n".join([f"{label}: {confidence}%" for label, confidence in confidence_scores.items()])
def doctor_space(patient_id):
for patient in patients_db:
if patient["ID"] == patient_id:
return f"⚠ Precautions: {patient['Precautions']}\nπŸ‘©β€βš• Recommended Doctor: {patient['Doctor']}"
return "❌ Patient not found. Please check the ID."
def pharmacist_space(patient_id):
for patient in patients_db:
if patient["ID"] == patient_id:
return f"πŸ’Š Medications: {patient['Medications']}"
return "❌ Patient not found. Please check the ID."
def patient_dashboard(patient_id, password):
for patient in patients_db:
if patient["ID"] == patient_id and patient["Password"] == password:
return (f"🩺 Name: {patient['Name']}\n"
f"πŸ“‹ Diagnosis: {patient['Diagnosis']}\n"
f"πŸ’Š Medications: {patient['Medications']}\n"
f"⚠ Precautions: {patient['Precautions']}\n"
f"πŸ‘©β€βš• Recommended Doctor: {patient['Doctor']}")
return "❌ Access Denied: Invalid ID or Password."
def doctor_dashboard(password):
if password != doctor_password:
return "❌ Access Denied: Incorrect Password"
if not patients_db:
return "No patient records available."
details = []
for patient in patients_db:
details.append(f"🩺 Name: {patient['Name']}\n"
f"πŸ“‹ Diagnosis: {patient['Diagnosis']}\n"
f"πŸ’Š Medications: {patient['Medications']}\n"
f"⚠ Precautions: {patient['Precautions']}\n"
f"πŸ‘©β€βš• Recommended Doctor: {patient['Doctor']}")
return "\n\n".join(details)
# Gradio Interfaces
registration_interface = gr.Interface(
fn=register_patient,
inputs=[
gr.Textbox(label="Patient Name"),
gr.Number(label="Age"),
gr.Radio(label="Gender", choices=["Male", "Female", "Other"]),
gr.Textbox(label="Set Password", type="password"),
],
outputs="text",
)
pdf_extraction_interface = gr.Interface(
fn=extract_pdf_report,
inputs=gr.File(label="Upload PDF Report"),
outputs="text",
)
report_analysis_interface = gr.Interface(
fn=analyze_report,
inputs=[
gr.Number(label="Patient ID"),
gr.Textbox(label="Report Text"),
],
outputs="text",
)
eye_disease_interface = gr.Interface(
fn=predict_eye_disease,
inputs=gr.Image(label="Upload an Eye Image", type="numpy"),
outputs="text",
)
doctor_space_interface = gr.Interface(
fn=doctor_space,
inputs=gr.Number(label="Patient ID"),
outputs="text",
)
pharmacist_space_interface = gr.Interface(
fn=pharmacist_space,
inputs=gr.Number(label="Patient ID"),
outputs="text",
)
patient_dashboard_interface = gr.Interface(
fn=patient_dashboard,
inputs=[
gr.Number(label="Patient ID"),
gr.Textbox(label="Password", type="password"),
],
outputs="text",
)
doctor_dashboard_interface = gr.Interface(
fn=doctor_dashboard,
inputs=gr.Textbox(label="Doctor Password", type="password"),
outputs="text",
)
consult_doctor_interface = gr.Interface(
fn=consult_doctor,
inputs=gr.Textbox(label="Enter Your Query for the Doctor"),
outputs="text",
)
# Gradio App Layout
with gr.Blocks() as app:
gr.Markdown("# Medico GPT")
with gr.Tab("Patient Registration"):
registration_interface.render()
with gr.Tab("Analyze Medical Report"):
report_analysis_interface.render()
with gr.Tab("Extract PDF Report"):
pdf_extraction_interface.render()
with gr.Tab("Ophthalmologist Space"):
eye_disease_interface.render()
with gr.Tab("Doctor Space"):
doctor_space_interface.render()
with gr.Tab("Pharmacist Space"):
pharmacist_space_interface.render()
with gr.Tab("Patient Dashboard"):
patient_dashboard_interface.render()
with gr.Tab("Doctor Dashboard"):
doctor_dashboard_interface.render()
with gr.Tab("Doctor Consult"):
consult_doctor_interface.render()
# Launch the app
app.launch(share=True)