Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Install SentencePiece | |
import sentencepiece | |
import torch | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("ahmed792002/Finetuning_T5_HealthCare_Chatbot", use_fast=True) | |
model = AutoModelForSeq2SeqLM.from_pretrained("ahmed792002/Finetuning_T5_HealthCare_Chatbot") | |
# Define the chatbot function | |
def chatbot(input_text): | |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True) | |
outputs = model.generate(inputs["input_ids"], max_length=100, num_beams=4, early_stopping=True) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Set up the Gradio interface | |
interface = gr.Interface( | |
fn=chatbot, | |
inputs=gr.inputs.Textbox(label="Enter your query"), | |
outputs=gr.outputs.Textbox(label="Response"), | |
title="Healthcare Chatbot", | |
description="Ask healthcare-related questions, and get responses from the fine-tuned T5 model." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() | |