video-object-removal / propainter_pipeline.py
ahmedghani's picture
completed codebase
bed6951
from inference_propainter import *
global fix_flow_complete
global fix_raft
global model
global device
device = get_device()
print(f'Running on device: {device}')
##############################################
# set up RAFT and flow competition model
##############################################
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'raft-things.pth'),
model_dir='weights', progress=True, file_name=None)
fix_raft = RAFT_bi(ckpt_path, device)
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'),
model_dir='weights', progress=True, file_name=None)
fix_flow_complete = RecurrentFlowCompleteNet(ckpt_path)
for p in fix_flow_complete.parameters():
p.requires_grad = False
fix_flow_complete.to(device)
fix_flow_complete.eval()
##############################################
# set up ProPainter model
##############################################
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'ProPainter.pth'),
model_dir='weights', progress=True, file_name=None)
model = InpaintGenerator(model_path=ckpt_path).to(device)
model.eval()
def process_video(
video='inputs/object_removal/bmx-trees',
mask='inputs/object_removal/bmx-trees_mask',
output='results',
resize_ratio=1.0,
height=-1,
width=-1,
mask_dilation=4,
ref_stride=10,
neighbor_length=10,
subvideo_length=80,
raft_iter=20,
mode='video_inpainting',
scale_h=1.0,
scale_w=1.2,
save_fps=24,
save_frames=False,
fp16=False
):
global fix_flow_complete
global fix_raft
global model
global device
# Use fp16 precision during inference to reduce running memory cost
use_half = True if fp16 else False
if device == torch.device('cpu'):
use_half = False
frames, fps, size, video_name = read_frame_from_videos(video)
if not width == -1 and not height == -1:
size = (width, height)
if not resize_ratio == 1.0:
size = (int(resize_ratio * size[0]), int(resize_ratio * size[1]))
frames, size, out_size = resize_frames(frames, size)
fps = save_fps if fps is None else fps
save_root = os.path.join(output, video_name)
if not os.path.exists(save_root):
os.makedirs(save_root, exist_ok=True)
if mode == 'video_inpainting':
frames_len = len(frames)
flow_masks, masks_dilated = read_mask(mask, frames_len, size,
flow_mask_dilates=mask_dilation,
mask_dilates=mask_dilation)
w, h = size
elif mode == 'video_outpainting':
assert scale_h is not None and scale_w is not None, 'Please provide a outpainting scale (s_h, s_w).'
frames, flow_masks, masks_dilated, size = extrapolation(frames, (scale_h, scale_w))
w, h = size
else:
raise NotImplementedError
# for saving the masked frames or video
masked_frame_for_save = []
for i in range(len(frames)):
mask_ = np.expand_dims(np.array(masks_dilated[i]),2).repeat(3, axis=2)/255.
img = np.array(frames[i])
green = np.zeros([h, w, 3])
green[:,:,1] = 255
alpha = 0.6
# alpha = 1.0
fuse_img = (1-alpha)*img + alpha*green
fuse_img = mask_ * fuse_img + (1-mask_)*img
masked_frame_for_save.append(fuse_img.astype(np.uint8))
frames_inp = [np.array(f).astype(np.uint8) for f in frames]
frames = to_tensors()(frames).unsqueeze(0) * 2 - 1
flow_masks = to_tensors()(flow_masks).unsqueeze(0)
masks_dilated = to_tensors()(masks_dilated).unsqueeze(0)
frames, flow_masks, masks_dilated = frames.to(device), flow_masks.to(device), masks_dilated.to(device)
##############################################
# ProPainter inference
##############################################
video_length = frames.size(1)
print(f'\nProcessing: {video_name} [{video_length} frames]...')
with torch.no_grad():
# ---- compute flow ----
if frames.size(-1) <= 640:
short_clip_len = 12
elif frames.size(-1) <= 720:
short_clip_len = 8
elif frames.size(-1) <= 1280:
short_clip_len = 4
else:
short_clip_len = 2
# use fp32 for RAFT
if frames.size(1) > short_clip_len:
gt_flows_f_list, gt_flows_b_list = [], []
for f in range(0, video_length, short_clip_len):
end_f = min(video_length, f + short_clip_len)
if f == 0:
flows_f, flows_b = fix_raft(frames[:,f:end_f], iters=raft_iter)
else:
flows_f, flows_b = fix_raft(frames[:,f-1:end_f], iters=raft_iter)
gt_flows_f_list.append(flows_f)
gt_flows_b_list.append(flows_b)
torch.cuda.empty_cache()
gt_flows_f = torch.cat(gt_flows_f_list, dim=1)
gt_flows_b = torch.cat(gt_flows_b_list, dim=1)
gt_flows_bi = (gt_flows_f, gt_flows_b)
else:
gt_flows_bi = fix_raft(frames, iters=raft_iter)
torch.cuda.empty_cache()
if use_half:
frames, flow_masks, masks_dilated = frames.half(), flow_masks.half(), masks_dilated.half()
gt_flows_bi = (gt_flows_bi[0].half(), gt_flows_bi[1].half())
fix_flow_complete = fix_flow_complete.half()
model = model.half()
# ---- complete flow ----
flow_length = gt_flows_bi[0].size(1)
if flow_length > subvideo_length:
pred_flows_f, pred_flows_b = [], []
pad_len = 5
for f in range(0, flow_length, subvideo_length):
s_f = max(0, f - pad_len)
e_f = min(flow_length, f + subvideo_length + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(flow_length, f + subvideo_length)
pred_flows_bi_sub, _ = fix_flow_complete.forward_bidirect_flow(
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
flow_masks[:, s_f:e_f+1])
pred_flows_bi_sub = fix_flow_complete.combine_flow(
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
pred_flows_bi_sub,
flow_masks[:, s_f:e_f+1])
pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e])
pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
pred_flows_f = torch.cat(pred_flows_f, dim=1)
pred_flows_b = torch.cat(pred_flows_b, dim=1)
pred_flows_bi = (pred_flows_f, pred_flows_b)
else:
pred_flows_bi, _ = fix_flow_complete.forward_bidirect_flow(gt_flows_bi, flow_masks)
pred_flows_bi = fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, flow_masks)
torch.cuda.empty_cache()
# ---- image propagation ----
masked_frames = frames * (1 - masks_dilated)
subvideo_length_img_prop = min(100, subvideo_length) # ensure a minimum of 100 frames for image propagation
if video_length > subvideo_length_img_prop:
updated_frames, updated_masks = [], []
pad_len = 10
for f in range(0, video_length, subvideo_length_img_prop):
s_f = max(0, f - pad_len)
e_f = min(video_length, f + subvideo_length_img_prop + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(video_length, f + subvideo_length_img_prop)
b, t, _, _, _ = masks_dilated[:, s_f:e_f].size()
pred_flows_bi_sub = (pred_flows_bi[0][:, s_f:e_f-1], pred_flows_bi[1][:, s_f:e_f-1])
prop_imgs_sub, updated_local_masks_sub = model.img_propagation(masked_frames[:, s_f:e_f],
pred_flows_bi_sub,
masks_dilated[:, s_f:e_f],
'nearest')
updated_frames_sub = frames[:, s_f:e_f] * (1 - masks_dilated[:, s_f:e_f]) + \
prop_imgs_sub.view(b, t, 3, h, w) * masks_dilated[:, s_f:e_f]
updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w)
updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e])
updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
updated_frames = torch.cat(updated_frames, dim=1)
updated_masks = torch.cat(updated_masks, dim=1)
else:
b, t, _, _, _ = masks_dilated.size()
prop_imgs, updated_local_masks = model.img_propagation(masked_frames, pred_flows_bi, masks_dilated, 'nearest')
updated_frames = frames * (1 - masks_dilated) + prop_imgs.view(b, t, 3, h, w) * masks_dilated
updated_masks = updated_local_masks.view(b, t, 1, h, w)
torch.cuda.empty_cache()
ori_frames = frames_inp
comp_frames = [None] * video_length
neighbor_stride = neighbor_length // 2
if video_length > subvideo_length:
ref_num = subvideo_length // ref_stride
else:
ref_num = -1
# ---- feature propagation + transformer ----
for f in tqdm(range(0, video_length, neighbor_stride)):
neighbor_ids = [
i for i in range(max(0, f - neighbor_stride),
min(video_length, f + neighbor_stride + 1))
]
ref_ids = get_ref_index(f, neighbor_ids, video_length, ref_stride, ref_num)
selected_imgs = updated_frames[:, neighbor_ids + ref_ids, :, :, :]
selected_masks = masks_dilated[:, neighbor_ids + ref_ids, :, :, :]
selected_update_masks = updated_masks[:, neighbor_ids + ref_ids, :, :, :]
selected_pred_flows_bi = (pred_flows_bi[0][:, neighbor_ids[:-1], :, :, :], pred_flows_bi[1][:, neighbor_ids[:-1], :, :, :])
with torch.no_grad():
# 1.0 indicates mask
l_t = len(neighbor_ids)
# pred_img = selected_imgs # results of image propagation
pred_img = model(selected_imgs, selected_pred_flows_bi, selected_masks, selected_update_masks, l_t)
pred_img = pred_img.view(-1, 3, h, w)
pred_img = (pred_img + 1) / 2
pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy() * 255
binary_masks = masks_dilated[0, neighbor_ids, :, :, :].cpu().permute(
0, 2, 3, 1).numpy().astype(np.uint8)
for i in range(len(neighbor_ids)):
idx = neighbor_ids[i]
img = np.array(pred_img[i]).astype(np.uint8) * binary_masks[i] \
+ ori_frames[idx] * (1 - binary_masks[i])
if comp_frames[idx] is None:
comp_frames[idx] = img
else:
comp_frames[idx] = comp_frames[idx].astype(np.float32) * 0.5 + img.astype(np.float32) * 0.5
comp_frames[idx] = comp_frames[idx].astype(np.uint8)
torch.cuda.empty_cache()
# save each frame
if save_frames:
for idx in range(video_length):
f = comp_frames[idx]
f = cv2.resize(f, out_size, interpolation = cv2.INTER_CUBIC)
f = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
img_save_root = os.path.join(save_root, 'frames', str(idx).zfill(4)+'.png')
imwrite(f, img_save_root)
# if mode == 'video_outpainting':
# comp_frames = [i[10:-10,10:-10] for i in comp_frames]
# masked_frame_for_save = [i[10:-10,10:-10] for i in masked_frame_for_save]
# save videos frame
masked_frame_for_save = [cv2.resize(f, out_size) for f in masked_frame_for_save]
comp_frames = [cv2.resize(f, out_size) for f in comp_frames]
imageio.mimwrite(os.path.join(save_root, 'masked_in.mp4'), masked_frame_for_save, fps=fps, quality=7)
imageio.mimwrite(os.path.join(save_root, 'inpaint_out.mp4'), comp_frames, fps=fps, quality=7)
print(f'\nAll results are saved in {save_root}')
torch.cuda.empty_cache()
return os.path.join(save_root, 'inpaint_out.mp4')