File size: 1,356 Bytes
502be4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import gradio as gr
from sentence_transformers import CrossEncoder
import pandas as pd

reranker = CrossEncoder("sentence-transformers/all-MiniLM-L12-v2")


def rerank_documents(query: str, documents: pd.DataFrame) -> pd.DataFrame:
    documents = documents.copy()
    documents = documents.drop_duplicates("chunk")
    documents["rank"] = reranker.predict([[query, hit] for hit in documents["chunk"]])
    documents = documents.sort_values(by="rank", ascending=False)
    return documents


with gr.Blocks() as demo:
    gr.Markdown("""# RAG Hub Datasets 
                
                Part of [smol blueprint](https://github.com/davidberenstein1957/smol-blueprint) - a smol blueprint for AI development, focusing on practical examples of RAG, information extraction, analysis and fine-tuning in the age of LLMs.""")

    query_input = gr.Textbox(
        label="Query", placeholder="Enter your question here...", lines=3
    )
    documents_input = gr.Dataframe(
        label="Documents", headers=["chunk"], wrap=True, interactive=True
    )
        
    submit_btn = gr.Button("Submit")
    documents_output = gr.Dataframe(
        label="Documents", headers=["chunk", "rank"], wrap=True
    )

    submit_btn.click(
        fn=rerank_documents,
        inputs=[query_input, documents_input],
        outputs=[documents_output],
    )

demo.launch()