File size: 17,109 Bytes
98c0b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85103b
 
98c0b3a
d85103b
98c0b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e6a52
 
 
 
 
 
 
 
98c0b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5a089
98c0b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e7545e
3e93178
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

""" Gradio Demo for image detection"""

# Importing necessary basic libraries and modules
import os

# PyTorch imports 
import torch
from torch.utils.data import DataLoader

# Importing the model, dataset, transformations and utility functions from PytorchWildlife
from PytorchWildlife.models import detection as pw_detection
from PytorchWildlife import utils as pw_utils
 
# Importing basic libraries
import shutil
import time
from PIL import Image
import supervision as sv
import gradio as gr
from zipfile import ZipFile
import numpy as np
import ast

# Importing the models, dataset, transformations, and utility functions from PytorchWildlife
from PytorchWildlife.models import classification as pw_classification
from PytorchWildlife.data import transforms as pw_trans
from PytorchWildlife.data import datasets as pw_data 

# Setting the device to use for computations ('cuda' indicates GPU)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Initializing a supervision box annotator for visualizing detections
dot_annotator = sv.DotAnnotator(radius=6)
box_annotator = sv.BoxAnnotator(thickness=4)
lab_annotator = sv.LabelAnnotator(text_color=sv.Color.BLACK, text_thickness=4, text_scale=2)
# Create a temp folder
os.makedirs(os.path.join("..","temp"), exist_ok=True) # ASK: Why do we need this?

# Initializing the detection and classification models
detection_model = None
classification_model = None
    
# Defining functions for different detection scenarios
def load_models(det, version, clf, wpath=None, wclass=None):

    global detection_model, classification_model
    if det != "None":
        if det == "HerdNet General":
            detection_model = pw_detection.HerdNet(device=DEVICE)
        elif det == "HerdNet Ennedi":
            detection_model = pw_detection.HerdNet(device=DEVICE, version="ennedi")
        else:
            detection_model = pw_detection.__dict__[det](device=DEVICE, pretrained=True, version=version)
    else:
        detection_model = None
        return "NO MODEL LOADED!!"

    if clf != "None":
        # Create an exception for custom weights
        if clf == "CustomWeights":
            if (wpath is not None) and (wclass is not None): 
                wclass = ast.literal_eval(wclass)
                classification_model = pw_classification.__dict__[clf](weights=wpath, class_names=wclass, device=DEVICE)
        else:
            classification_model = pw_classification.__dict__[clf](device=DEVICE, pretrained=True)
    else:
        classification_model = None

    return "Loaded Detector: {}. Version: {}. Loaded Classifier: {}".format(det, version, clf)


def single_image_detection(input_img, det_conf_thres, clf_conf_thres, img_index=None):
    """Performs detection on a single image and returns an annotated image.

    Args:
        input_img (PIL.Image): Input image in PIL.Image format defaulted by Gradio.
        det_conf_thres (float): Confidence threshold for detection.
        clf_conf_thres (float): Confidence threshold for classification.
        img_index: Image index identifier.
    Returns:
        annotated_img (PIL.Image.Image): Annotated image with bounding box instances.
    """

    input_img = np.array(input_img)
    # If the detection model is HerdNet, use dot annotator, else use box annotator
    if detection_model.__class__.__name__.__contains__("HerdNet"):
        annotator = dot_annotator
        # Herdnet receives both clf and det confidence thresholds
        results_det = detection_model.single_image_detection(input_img,
                                                             img_path=img_index,
                                                             det_conf_thres=det_conf_thres,
                                                             clf_conf_thres=clf_conf_thres)
    else:
        annotator = box_annotator
        results_det = detection_model.single_image_detection(input_img,
                                                             img_path=img_index,
                                                             det_conf_thres = det_conf_thres)
    
    if classification_model is not None:
        labels = []
        for i, (xyxy, det_id) in enumerate(zip(results_det["detections"].xyxy, results_det["detections"].class_id)):
            # Only run classifier when detection class is animal
            if det_id == 0:
                cropped_image = sv.crop_image(image=input_img, xyxy=xyxy)
                results_clf = classification_model.single_image_classification(cropped_image)
                labels.append("{} {:.2f}".format(results_clf["prediction"] if results_clf["confidence"] > clf_conf_thres else "Unknown",
                                                 results_clf["confidence"]))
            else:
                labels.append(results_det["labels"][i])
    else:
        labels = results_det["labels"]

    annotated_img = lab_annotator.annotate(
        scene=annotator.annotate(
            scene=input_img,
            detections=results_det["detections"],
        ),
        detections=results_det["detections"],
        labels=labels,
    )
    return annotated_img

def batch_detection(zip_file, timelapse, det_conf_thres):
    """Perform detection on a batch of images from a zip file and return path to results JSON.
    
    Args:
        zip_file (File): Zip file containing images.
        det_conf_thres (float): Confidence threshold for detection.
        timelapse (boolean): Flag to output JSON for timelapse.
        clf_conf_thres (float): Confidence threshold for classification.

    Returns:
        json_save_path (str): Path to the JSON file containing detection results.
    """
    # Clean the temp folder if it contains files
    extract_path = os.path.join("..","temp","zip_upload")
    if os.path.exists(extract_path):
        shutil.rmtree(extract_path)
    os.makedirs(extract_path)

    json_save_path = os.path.join(extract_path, "results.json")
    # with ZipFile(zip_file.name) as zfile:
    #     zfile.extractall(extract_path)
        # Check the contents of the extracted folder
    extracted_files = os.listdir(extract_path)
        
    if len(extracted_files) == 1 and os.path.isdir(os.path.join(extract_path, extracted_files[0])):
        tgt_folder_path = os.path.join(extract_path, extracted_files[0])
    else:
        tgt_folder_path = extract_path
    # If the detection model is HerdNet set batch_size to 1
    if detection_model.__class__.__name__.__contains__("HerdNet"):
        det_results = detection_model.batch_image_detection(tgt_folder_path, batch_size=1, det_conf_thres=det_conf_thres, id_strip=tgt_folder_path) 
    else:
        det_results = detection_model.batch_image_detection(tgt_folder_path, batch_size=16, det_conf_thres=det_conf_thres, id_strip=tgt_folder_path)

    if classification_model is not None:
        clf_dataset = pw_data.DetectionCrops(
            det_results,
            transform=pw_trans.Classification_Inference_Transform(target_size=224),
            path_head=tgt_folder_path
        )
        clf_loader = DataLoader(clf_dataset, batch_size=32, shuffle=False, 
                                pin_memory=True, num_workers=4, drop_last=False)
        clf_results = classification_model.batch_image_classification(clf_loader, id_strip=tgt_folder_path)
        if timelapse:
            json_save_path = json_save_path.replace(".json", "_timelapse.json")
            pw_utils.save_detection_classification_timelapse_json(det_results=det_results,
                                                        clf_results=clf_results,
                                                        det_categories=detection_model.CLASS_NAMES,
                                                        clf_categories=classification_model.CLASS_NAMES,
                                                        output_path=json_save_path)
        else:
            pw_utils.save_detection_classification_json(det_results=det_results,
                                                        clf_results=clf_results,
                                                        det_categories=detection_model.CLASS_NAMES,
                                                        clf_categories=classification_model.CLASS_NAMES,
                                                        output_path=json_save_path)
    else:
        if timelapse:
            json_save_path = json_save_path.replace(".json", "_timelapse.json")
            pw_utils.save_detection_timelapse_json(det_results, json_save_path, categories=detection_model.CLASS_NAMES)
        elif detection_model.__class__.__name__.__contains__("HerdNet"):
            pw_utils.save_detection_json_as_dots(det_results, json_save_path, categories=detection_model.CLASS_NAMES)
        else: 
            pw_utils.save_detection_json(det_results, json_save_path, categories=detection_model.CLASS_NAMES)

    return json_save_path

def batch_path_detection(tgt_folder_path, det_conf_thres):
    """Perform detection on a batch of images from a zip file and return path to results JSON.
    
    Args:
        tgt_folder_path (str): path to the folder containing the images.
        det_conf_thres (float): Confidence threshold for detection.
    Returns:
        json_save_path (str): Path to the JSON file containing detection results.
    """

    json_save_path = os.path.join(tgt_folder_path, "results.json")
    det_results = detection_model.batch_image_detection(tgt_folder_path, det_conf_thres=det_conf_thres, id_strip=tgt_folder_path)
    if detection_model.__class__.__name__.__contains__("HerdNet"):
        pw_utils.save_detection_json_as_dots(det_results, json_save_path, categories=detection_model.CLASS_NAMES)
    else:
        pw_utils.save_detection_json(det_results, json_save_path, categories=detection_model.CLASS_NAMES)

    return json_save_path


def video_detection(video, det_conf_thres, clf_conf_thres, target_fps, codec):
    """Perform detection on a video and return path to processed video.
    
    Args:
        video (str): Video source path.
        det_conf_thres (float): Confidence threshold for detection.
        clf_conf_thres (float): Confidence threshold for classification.

    """
    def callback(frame, index):
        annotated_frame = single_image_detection(frame,
                                                 img_index=index,
                                                 det_conf_thres=det_conf_thres,
                                                 clf_conf_thres=clf_conf_thres)
        return annotated_frame 
    
    target_path = os.path.join("..","temp","video_detection.mp4")
    pw_utils.process_video(source_path=video, target_path=target_path,
                           callback=callback, target_fps=int(target_fps), codec=codec)
    return target_path

def wrap_bool_output(fn):
    def wrapped(*args, **kwargs):
        result = fn(*args, **kwargs)
        if isinstance(result, bool):
            return {"success": result}
        return result
    return wrapped

# Building Gradio UI

with gr.Blocks() as demo:
    gr.Markdown("# Pytorch-Wildlife Demo.")
    with gr.Row():
        det_drop = gr.Dropdown(
            ["None", "MegaDetectorV5", "MegaDetectorV6", "HerdNet General", "HerdNet Ennedi"],
            label="Detection model",
            info="Will add more detection models!",
            value="None" # Default 
        )
        det_version = gr.Dropdown(  
            ["None"],  
            label="Model version",  
            info="Select the version of the model",
            value="None",
        )
    
    with gr.Column():
        clf_drop = gr.Dropdown(
            ["None", "AI4GOpossum", "AI4GAmazonRainforest", "AI4GSnapshotSerengeti", "CustomWeights"],
            interactive=True,
            label="Classification model",
            info="Will add more classification models!",
            visible=False,
            value="None"
        )
        custom_weights_path = gr.Textbox(label="Custom Weights Path", visible=False, interactive=True, placeholder="./weights/my_weight.pt")
        custom_weights_class = gr.Textbox(label="Custom Weights Class", visible=False, interactive=True, placeholder="{1:'ocelot', 2:'cow', 3:'bear'}")
        load_but = gr.Button("Load Models!")
        load_out = gr.Text("NO MODEL LOADED!!", label="Loaded models:")
   
    def update_ui_elements(det_model):  
        if det_model == "MegaDetectorV6":  
            return gr.Dropdown(choices=["MDV6-yolov9-c", "MDV6-yolov9-e", "MDV6-yolov10-c", "MDV6-yolov10-e", "MDV6-rtdetr-c"], interactive=True, label="Model version", value="MDV6-yolov9e"), gr.update(visible=True)  
        elif det_model == "MegaDetectorV5":  
            return gr.Dropdown(choices=["a", "b"], interactive=True, label="Model version", value="a"), gr.update(visible=True)
        else:
            return gr.Dropdown(choices=["None"], interactive=True, label="Model version", value="None"), gr.update(value="None", visible=False) 
    
    det_drop.change(update_ui_elements, det_drop, [det_version, clf_drop])

    def toggle_textboxes(model):
        if model == "CustomWeights":
            return gr.update(visible=True), gr.update(visible=True)
        else:
            return gr.update(visible=False), gr.update(visible=False)
    
    clf_drop.change(
        toggle_textboxes,
        clf_drop,
        [custom_weights_path, custom_weights_class]
    )

    with gr.Tab("Single Image Process"):
        with gr.Row():
            with gr.Column():
                sgl_in = gr.Image(type="pil")
                sgl_conf_sl_det = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
                sgl_conf_sl_clf = gr.Slider(0, 1, label="Classification Confidence Threshold", value=0.7, visible=True)
            sgl_out = gr.Image() 
        sgl_but = gr.Button("Detect Animals!")
    with gr.Tab("Folder Separation"):
        with gr.Row():
            with gr.Column():
                inp_path = gr.Textbox(label="Input path", placeholder="./data/")
                out_path = gr.Textbox(label="Output path", placeholder="./output/")
                bth_conf_fs = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
                process_btn = gr.Button("Process Files")
                bth_out2 = gr.File(label="Detection Results JSON.", height=200)
                with gr.Column():
                    process_files_button = gr.Button("Separate files")
                    process_result = gr.Text("Click on 'Separate files' once you see the JSON file", label="Separated files:")
                    process_btn.click(batch_path_detection, inputs=[inp_path, bth_conf_fs], outputs=bth_out2)
                    process_files_button.click(wrap_bool_output(pw_utils.detection_folder_separation), inputs=[bth_out2, inp_path, out_path, bth_conf_fs], outputs=process_result)
    with gr.Tab("Batch Image Process"):
        with gr.Row():
            with gr.Column():
                bth_in = gr.File(label="Upload zip file.")
                # The timelapse checkbox is only visible when the detection model is not HerdNet
                chck_timelapse = gr.Checkbox(label="Generate timelapse JSON", visible=False)
                bth_conf_sl = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
            bth_out = gr.File(label="Detection Results JSON.", height=200)
        bth_but = gr.Button("Detect Animals!")
    with gr.Tab("Single Video Process"):
        with gr.Row():
            with gr.Column():
                vid_in = gr.Video(label="Upload a video.")
                vid_conf_sl_det = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
                vid_conf_sl_clf = gr.Slider(0, 1, label="Classification Confidence Threshold", value=0.7)
                vid_fr = gr.Dropdown([5, 10, 30], label="Output video framerate", value=30)
                vid_enc = gr.Dropdown(
                    ["mp4v", "avc1"],
                    label="Video encoder",
                    info="mp4v is default, av1c is faster (needs conda install opencv)",
                    value="mp4v"
                    )
            vid_out = gr.Video()
        vid_but = gr.Button("Detect Animals!")
        
    # Show timelapsed checkbox only when detection model is not HerdNet
    det_drop.change(
        lambda model: gr.update(visible=True) if "HerdNet" not in model else gr.update(visible=False),
        det_drop,
        [chck_timelapse]
    )

    load_but.click(load_models, inputs=[det_drop, det_version, clf_drop, custom_weights_path, custom_weights_class], outputs=load_out)
    sgl_but.click(single_image_detection, inputs=[sgl_in, sgl_conf_sl_det, sgl_conf_sl_clf], outputs=sgl_out)
    bth_but.click(batch_detection, inputs=[bth_in, chck_timelapse, bth_conf_sl], outputs=bth_out)
    vid_but.click(video_detection, inputs=[vid_in, vid_conf_sl_det, vid_conf_sl_clf, vid_fr, vid_enc], outputs=vid_out)

if __name__ == "__main__":
    #demo.queue()
    demo.launch(share=True)