Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,208 Bytes
b38382a d738bfa b38382a 25714c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
""" Demo using Gradio interface"""
#%%
# Importing basic libraries
import os
import time
from PIL import Image
import supervision as sv
import gradio as gr
from zipfile import ZipFile
from torch.utils.data import DataLoader
#%%
# Importing the models, dataset, transformations, and utility functions from PytorchWildlife
from PytorchWildlife.models import detection as pw_detection
from PytorchWildlife.models import classification as pw_classification
from PytorchWildlife.data import transforms as pw_trans
from PytorchWildlife.data import datasets as pw_data
from PytorchWildlife import utils as pw_utils
#%%
# Setting the device to use for computations ('cuda' indicates GPU)
DEVICE = "cpu"
# Initializing a supervision box annotator for visualizing detections
box_annotator = sv.BoxAnnotator(thickness=4, text_thickness=4, text_scale=2)
# Initializing the detection and classification models
detection_model = None
classification_model = None
# Defining transformations for detection and classification
trans_det = None
trans_clf = None
#%% Defining functions for different detection scenarios
def load_models(det, clf):
global detection_model, classification_model, trans_det, trans_clf
detection_model = pw_detection.__dict__[det](device=DEVICE, pretrained=True)
if clf != "None":
classification_model = pw_classification.__dict__[clf](device=DEVICE, pretrained=True)
trans_det = pw_trans.MegaDetector_v5_Transform(target_size=detection_model.IMAGE_SIZE,
stride=detection_model.STRIDE)
trans_clf = pw_trans.Classification_Inference_Transform(target_size=224)
return "Loaded Detector: {}. Loaded Classifier: {}".format(det, clf)
def single_image_detection(input_img, det_conf_thres, clf_conf_thres, img_index=None):
"""Performs detection on a single image and returns an annotated image.
Args:
input_img (np.ndarray): Input image in numpy array format defaulted by Gradio.
det_conf_thre (float): Confidence threshold for detection.
clf_conf_thre (float): Confidence threshold for classification.
img_index: Image index identifier.
Returns:
annotated_img (PIL.Image.Image): Annotated image with bounding box instances.
"""
results_det = detection_model.single_image_detection(trans_det(input_img),
input_img.shape,
img_path=img_index,
conf_thres=det_conf_thres)
if classification_model is not None:
labels = []
for xyxy, det_id in zip(results_det["detections"].xyxy, results_det["detections"].class_id):
# Only run classifier when detection class is animal
if det_id == 0:
cropped_image = sv.crop_image(image=input_img, xyxy=xyxy)
results_clf = classification_model.single_image_classification(trans_clf(Image.fromarray(cropped_image)))
labels.append("{} {:.2f}".format(results_clf["prediction"] if results_clf["confidence"] > clf_conf_thres else "Unknown",
results_clf["confidence"]))
else:
labels = results_det["labels"]
else:
labels = results_det["labels"]
annotated_img = box_annotator.annotate(scene=input_img, detections=results_det["detections"], labels=labels)
return annotated_img
def batch_detection(zip_file, det_conf_thres):
"""Perform detection on a batch of images from a zip file and return path to results JSON.
Args:
zip_file (File): Zip file containing images.
det_conf_thre (float): Confidence threshold for detection.
clf_conf_thre (float): Confidence threshold for classification.
Returns:
json_save_path (str): Path to the JSON file containing detection results.
"""
extract_path = os.path.join("..","temp","zip_upload")
json_save_path = os.path.join(extract_path, "results.json")
with ZipFile(zip_file.name) as zfile:
zfile.extractall(extract_path)
#tgt_folder_path = os.path.join(extract_path, zip_file.name.rsplit(os.sep, 1)[1].rstrip(".zip"))
tgt_folder_path = os.path.join(extract_path)
det_dataset = pw_data.DetectionImageFolder(tgt_folder_path, transform=trans_det)
det_loader = DataLoader(det_dataset, batch_size=32, shuffle=False,
pin_memory=True, num_workers=8, drop_last=False)
det_results = detection_model.batch_image_detection(det_loader, conf_thres=det_conf_thres, id_strip=tgt_folder_path)
if classification_model is not None:
clf_dataset = pw_data.DetectionCrops(
det_results,
transform=pw_trans.Classification_Inference_Transform(target_size=224),
path_head=tgt_folder_path
)
clf_loader = DataLoader(clf_dataset, batch_size=32, shuffle=False,
pin_memory=True, num_workers=8, drop_last=False)
clf_results = classification_model.batch_image_classification(clf_loader, id_strip=tgt_folder_path)
pw_utils.save_detection_classification_json(det_results=det_results,
clf_results=clf_results,
det_categories=detection_model.CLASS_NAMES,
clf_categories=classification_model.CLASS_NAMES,
output_path=json_save_path)
else:
pw_utils.save_detection_json(det_results, json_save_path, categories=detection_model.CLASS_NAMES)
return json_save_path
def video_detection(video, det_conf_thres, clf_conf_thres, target_fps):
"""Perform detection on a video and return path to processed video.
Args:
video (str): Video source path.
det_conf_thre (float): Confidence threshold for detection.
clf_conf_thre (float): Confidence threshold for classification.
"""
def callback(frame, index):
annotated_frame = single_image_detection(frame,
img_index=index,
det_conf_thres=det_conf_thres,
clf_conf_thres=clf_conf_thres)
return annotated_frame
target_path = "../temp/video_detection.mp4"
pw_utils.process_video(source_path=video, target_path=target_path,
callback=callback, target_fps=target_fps)
return target_path
#%% Building Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Pytorch-Wildlife Demo.")
with gr.Row():
det_drop = gr.Dropdown(
["MegaDetectorV5"],
label="Detection model",
info="Will add more detection models!",
value="MegaDetectorV5"
)
clf_drop = gr.Dropdown(
["None", "AI4GOpossum", "AI4GAmazonRainforest"],
label="Classification model",
info="Will add more classification models!",
value="None"
)
with gr.Column():
load_but = gr.Button("Load Models!")
load_out = gr.Text("NO MODEL LOADED!!", label="Loaded models:")
with gr.Tab("Single Image Process"):
with gr.Row():
with gr.Column():
sgl_in = gr.Image()
sgl_conf_sl_det = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
sgl_conf_sl_clf = gr.Slider(0, 1, label="Classification Confidence Threshold", value=0.7)
sgl_out = gr.Image()
sgl_but = gr.Button("Detect Animals!")
with gr.Tab("Batch Image Process"):
with gr.Row():
with gr.Column():
bth_in = gr.File(label="Upload zip file.")
bth_conf_sl = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
bth_out = gr.File(label="Detection Results JSON.", height=200)
bth_but = gr.Button("Detect Animals!")
with gr.Tab("Single Video Process"):
with gr.Row():
with gr.Column():
vid_in = gr.Video(label="Upload a video.")
vid_conf_sl_det = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
vid_conf_sl_clf = gr.Slider(0, 1, label="Classification Confidence Threshold", value=0.7)
vid_fr = gr.Dropdown([5, 10, 30], label="Output video framerate", value=30)
vid_out = gr.Video()
vid_but = gr.Button("Detect Animals!")
load_but.click(load_models, inputs=[det_drop, clf_drop], outputs=load_out)
sgl_but.click(single_image_detection, inputs=[sgl_in, sgl_conf_sl_det, sgl_conf_sl_clf], outputs=sgl_out)
bth_but.click(batch_detection, inputs=[bth_in, bth_conf_sl], outputs=bth_out)
vid_but.click(video_detection, inputs=[vid_in, vid_conf_sl_det, vid_conf_sl_clf, vid_fr], outputs=vid_out)
if __name__ == "__main__":
demo.queue()
demo.launch()
|