File size: 9,208 Bytes
b38382a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d738bfa
b38382a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25714c9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

""" Demo using Gradio interface"""

#%% 
# Importing basic libraries
import os
import time
from PIL import Image
import supervision as sv
import gradio as gr
from zipfile import ZipFile
from torch.utils.data import DataLoader

#%% 
# Importing the models, dataset, transformations, and utility functions from PytorchWildlife
from PytorchWildlife.models import detection as pw_detection
from PytorchWildlife.models import classification as pw_classification
from PytorchWildlife.data import transforms as pw_trans
from PytorchWildlife.data import datasets as pw_data 
from PytorchWildlife import utils as pw_utils

#%% 
# Setting the device to use for computations ('cuda' indicates GPU)
DEVICE = "cpu"
# Initializing a supervision box annotator for visualizing detections
box_annotator = sv.BoxAnnotator(thickness=4, text_thickness=4, text_scale=2)

# Initializing the detection and classification models
detection_model = None
classification_model = None
    
# Defining transformations for detection and classification
trans_det = None
trans_clf = None

#%% Defining functions for different detection scenarios
def load_models(det, clf):

    global detection_model, classification_model, trans_det, trans_clf

    detection_model = pw_detection.__dict__[det](device=DEVICE, pretrained=True)
    if clf != "None":
        classification_model = pw_classification.__dict__[clf](device=DEVICE, pretrained=True)

    trans_det = pw_trans.MegaDetector_v5_Transform(target_size=detection_model.IMAGE_SIZE,
                                          stride=detection_model.STRIDE)
    trans_clf = pw_trans.Classification_Inference_Transform(target_size=224)

    return "Loaded Detector: {}. Loaded Classifier: {}".format(det, clf)


def single_image_detection(input_img, det_conf_thres, clf_conf_thres, img_index=None):
    """Performs detection on a single image and returns an annotated image.

    Args:
        input_img (np.ndarray): Input image in numpy array format defaulted by Gradio.
        det_conf_thre (float): Confidence threshold for detection.
        clf_conf_thre (float): Confidence threshold for classification.
        img_index: Image index identifier.
    Returns:
        annotated_img (PIL.Image.Image): Annotated image with bounding box instances.
    """
    results_det = detection_model.single_image_detection(trans_det(input_img),
                                                         input_img.shape,
                                                         img_path=img_index,
                                                         conf_thres=det_conf_thres)
    if classification_model is not None:
        labels = []
        for xyxy, det_id in zip(results_det["detections"].xyxy, results_det["detections"].class_id):
            # Only run classifier when detection class is animal
            if det_id == 0:
                cropped_image = sv.crop_image(image=input_img, xyxy=xyxy)
                results_clf = classification_model.single_image_classification(trans_clf(Image.fromarray(cropped_image)))
                labels.append("{} {:.2f}".format(results_clf["prediction"] if results_clf["confidence"] > clf_conf_thres else "Unknown",
                                                 results_clf["confidence"]))
            else:
                labels = results_det["labels"]
    else:
        labels = results_det["labels"]
    annotated_img = box_annotator.annotate(scene=input_img, detections=results_det["detections"], labels=labels)
    return annotated_img


def batch_detection(zip_file, det_conf_thres):
    """Perform detection on a batch of images from a zip file and return path to results JSON.
    
    Args:
        zip_file (File): Zip file containing images.
        det_conf_thre (float): Confidence threshold for detection.
        clf_conf_thre (float): Confidence threshold for classification.

    Returns:
        json_save_path (str): Path to the JSON file containing detection results.
    """
    extract_path = os.path.join("..","temp","zip_upload")
    json_save_path = os.path.join(extract_path, "results.json")
    with ZipFile(zip_file.name) as zfile:
        zfile.extractall(extract_path)
    #tgt_folder_path = os.path.join(extract_path, zip_file.name.rsplit(os.sep, 1)[1].rstrip(".zip"))
    tgt_folder_path = os.path.join(extract_path)
    det_dataset = pw_data.DetectionImageFolder(tgt_folder_path, transform=trans_det)
    det_loader = DataLoader(det_dataset, batch_size=32, shuffle=False, 
                            pin_memory=True, num_workers=8, drop_last=False)
    det_results = detection_model.batch_image_detection(det_loader, conf_thres=det_conf_thres, id_strip=tgt_folder_path)

    if classification_model is not None:
        clf_dataset = pw_data.DetectionCrops(
            det_results,
            transform=pw_trans.Classification_Inference_Transform(target_size=224),
            path_head=tgt_folder_path
        )
        clf_loader = DataLoader(clf_dataset, batch_size=32, shuffle=False, 
                                pin_memory=True, num_workers=8, drop_last=False)
        clf_results = classification_model.batch_image_classification(clf_loader, id_strip=tgt_folder_path)
        pw_utils.save_detection_classification_json(det_results=det_results,
                                                    clf_results=clf_results,
                                                    det_categories=detection_model.CLASS_NAMES,
                                                    clf_categories=classification_model.CLASS_NAMES,
                                                    output_path=json_save_path)
    else:
        pw_utils.save_detection_json(det_results, json_save_path, categories=detection_model.CLASS_NAMES)

    return json_save_path


def video_detection(video, det_conf_thres, clf_conf_thres, target_fps):
    """Perform detection on a video and return path to processed video.
    
    Args:
        video (str): Video source path.
        det_conf_thre (float): Confidence threshold for detection.
        clf_conf_thre (float): Confidence threshold for classification.

    """
    def callback(frame, index):
        annotated_frame = single_image_detection(frame,
                                                 img_index=index,
                                                 det_conf_thres=det_conf_thres,
                                                 clf_conf_thres=clf_conf_thres)
        return annotated_frame 
    
    target_path = "../temp/video_detection.mp4"
    pw_utils.process_video(source_path=video, target_path=target_path,
                           callback=callback, target_fps=target_fps)
    return target_path

#%% Building Gradio UI

with gr.Blocks() as demo:
    gr.Markdown("# Pytorch-Wildlife Demo.")
    with gr.Row():
        det_drop = gr.Dropdown(
            ["MegaDetectorV5"],
            label="Detection model",
            info="Will add more detection models!",
            value="MegaDetectorV5"
        )
        clf_drop = gr.Dropdown(
            ["None", "AI4GOpossum", "AI4GAmazonRainforest"],
            label="Classification model",
            info="Will add more classification models!",
            value="None"
        )
    with gr.Column():
        load_but = gr.Button("Load Models!")
        load_out = gr.Text("NO MODEL LOADED!!", label="Loaded models:")
    with gr.Tab("Single Image Process"):
        with gr.Row():
            with gr.Column():
                sgl_in = gr.Image()
                sgl_conf_sl_det = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
                sgl_conf_sl_clf = gr.Slider(0, 1, label="Classification Confidence Threshold", value=0.7)
            sgl_out = gr.Image() 
        sgl_but = gr.Button("Detect Animals!")
    with gr.Tab("Batch Image Process"):
        with gr.Row():
            with gr.Column():
                bth_in = gr.File(label="Upload zip file.")
                bth_conf_sl = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
            bth_out = gr.File(label="Detection Results JSON.", height=200)
        bth_but = gr.Button("Detect Animals!")
    with gr.Tab("Single Video Process"):
        with gr.Row():
            with gr.Column():
                vid_in = gr.Video(label="Upload a video.")
                vid_conf_sl_det = gr.Slider(0, 1, label="Detection Confidence Threshold", value=0.2)
                vid_conf_sl_clf = gr.Slider(0, 1, label="Classification Confidence Threshold", value=0.7)
                vid_fr = gr.Dropdown([5, 10, 30], label="Output video framerate", value=30)
            vid_out = gr.Video()
        vid_but = gr.Button("Detect Animals!")

    load_but.click(load_models, inputs=[det_drop, clf_drop], outputs=load_out)
    sgl_but.click(single_image_detection, inputs=[sgl_in, sgl_conf_sl_det, sgl_conf_sl_clf], outputs=sgl_out)
    bth_but.click(batch_detection, inputs=[bth_in, bth_conf_sl], outputs=bth_out)
    vid_but.click(video_detection, inputs=[vid_in, vid_conf_sl_det, vid_conf_sl_clf, vid_fr], outputs=vid_out)

if __name__ == "__main__":
    demo.queue()
    demo.launch()