File size: 10,442 Bytes
35df775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f6e647
 
 
 
 
 
 
 
 
35df775
 
 
defe301
35df775
 
17b7d97
35df775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import gradio as gr
from keras.models import load_model
from PIL import Image, ImageOps
import numpy as np
import time
import json

np.set_printoptions(suppress=True)

class AIVisionSystem:
  def __init__(self, model_path="keras_model.h5", labels_path="labels.txt"):
    try:
      # Load the model
      self.model = load_model(model_path, compile=False)

      # Load the labels
      with open(labels_path, "r", encoding="utf-8") as f:
        self.class_names = f.readlines()
      print(self.class_names)

      self.model_loaded = True

    except Exception as e:
      print(f"❌ Model loading failed: {e}")
      self.model_loaded = False
      self.class_names = []

  def preprocess_image(self, image):
    if image is None: return None

    image = ImageOps.fit(image.convert("RGB"), (224, 224), Image.Resampling.LANCZOS)
    image_array = np.asarray(image)
    return np.expand_dims(image_array, axis=0)

  def predict(self, image):
    if not self.model_loaded:
      fake_predictions = np.random.rand(len(self.class_names))
      fake_predictions = fake_predictions / fake_predictions.sum()  # Normalize
      return fake_predictions

    processed_image = self.preprocess_image(image)
    if processed_image is None: return None

    prediction = self.model.predict(processed_image, verbose=0)
    print(prediction)

    return prediction[0]

  def analyze_image(self, image):
    if image is None:
      return {
        "status": "❌ No image detected",
        "prediction": "",
        "confidence": 0,
        "all_predictions": {},
        "processing_time": 0
      }

    # Start timing
    start_time = time.time()

    # Perform prediction
    predictions = self.predict(image)
    if predictions is None:
      return {
        "status": "❌ Identification failed",
        "prediction": "",
        "confidence": 0,
        "all_predictions": {},
        "processing_time": 0
      }

    # Calculate processing time
    processing_time = time.time() - start_time

    # Find the prediction with the highest confidence
    max_index = np.argmax(predictions)
    max_confidence = predictions[max_index]
    predicted_class = self.class_names[max_index].strip()

    # Clean up class name
    if len(predicted_class.split(' ', 1)) > 1:
      class_name = predicted_class.split(' ', 1)[1]
    else:
      class_name = predicted_class

    # Prepare all prediction results
    all_predictions = {}
    for i, (class_line, confidence) in enumerate(zip(self.class_names, predictions)):
      clean_name = class_line.strip()
      if len(clean_name.split(' ', 1)) > 1:
          clean_name = clean_name.split(' ', 1)[1]
      all_predictions[clean_name] = float(confidence)
      print(f"{clean_name}: {confidence}")

    return {
      "status": "✅ Analysis complete",
      "prediction": class_name,
      "confidence": float(max_confidence),
      "all_predictions": all_predictions,
      "processing_time": processing_time
    }

def process_image(image):
  result = client.analyze_image(image)

  # Format the result display
  if result["confidence"] > 0:
      status_text = f"""
🔍 **AI Analysis Report**

**Status**: {result["status"]}<br>
**Prediction**: `{result["prediction"]}`<br>
**Confidence**: `{result["confidence"]:.2%}`<br>
**Processing Time**: `{result["processing_time"]:.3f}s`

---

**📊 Detailed Analysis Results:**
"""

      # Add all prediction results
      sorted_predictions = sorted(result["all_predictions"].items(), key=lambda x: x[1], reverse=True)

      for class_name, confidence in sorted_predictions:
        bar_length = int(confidence * 20)  # 20 character width progress bar
        bar = "█" * bar_length + "░" * (20 - bar_length)
        status_text += f"<br>`{class_name}`: {bar} `{confidence:.1%}`"

      # Prepare Gradio label format
      gradio_labels = {name: conf for name, conf in result["all_predictions"].items()}

  else:
    status_text = result["status"]
    gradio_labels = {}

  return status_text, gradio_labels

# Custom CSS styles
custom_css = """
  /* Main body background */
  .gradio-container {
    background: linear-gradient(135deg, #0c0c0c 0%, #1a1a2e 50%, #16213e 100%) !important;
    color: #ffffff !important;
    font-family: 'IBM Plex Mono', monospace !important;
  }

  .gradio-container hr {
    margin: 0 !important;
    border-color: #8000ff !important;
  }

  /* Title style */
  .main-header {
    text-align: center;
    background: linear-gradient(45deg, #00f5ff, #0080ff, #8000ff);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    background-clip: text;
    font-size: 3em !important;
    font-weight: bold !important;
    text-shadow: 0 0 30px rgba(0, 245, 255, 0.5);
    margin: 20px 0 !important;
    animation: glow 2s ease-in-out infinite alternate;
  }

  @keyframes glow {
    from { filter: drop-shadow(0 0 20px #00f5ff); }
    to { filter: drop_shadow(0 0 30px #8000ff); }
  }

  /* Subtitle */
  .sub-header {
    text-align: center;
    color: #00f5ff !important;
    font-size: 1.2em !important;
    margin-bottom: 30px !important;
    opacity: 0.8;
  }

  /* Input area */
  .input-section {
    background: rgba(0, 245, 255, 0.1) !important;
    border: 2px solid rgba(0, 245, 255, 0.3) !important;
    border-radius: 15px !important;
    padding: 20px !important;
    box-shadow: 0 0 25px rgba(0, 245, 255, 0.2) !important;
  }

  /* Output area */
  .output-section {
    background: rgba(128, 0, 255, 0.1) !important;
    border: 2px solid rgba(128, 0, 255, 0.3) !important;
    border-radius: 15px !important;
    padding: 20px !important;
    box-shadow: 0 0 25px rgba(128, 0, 255, 0.2) !important;
  }

  /* Button style */
  .gr-button {
    background: linear-gradient(45deg, #00f5ff, #8000ff) !important;
    border: none !important;
    color: white !important;
    font-weight: bold !important;
    border-radius: 25px !important;
    box-shadow: 0 4px 15px rgba(0, 245, 255, 0.3) !important;
    transition: all 0.3s ease !important;
  }

  .gr-button:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 6px 20px rgba(128, 0, 255, 0.4) !important;
  }

  /* Progress bar and labels */
  .gr-label {
    color: #00f5ff !important;
    font-weight: bold !important;
  }

  /* Input box and text area */
  .gr-textbox, .gr-markdown {
    background: rgba(0, 0, 0, 0.5) !important;
    border: 1px solid rgba(0, 245, 255, 0.3) !important;
    color: #ffffff !important;
    border-radius: 10px !important;
  }

  /* Image preview */
  .gr-image {
    border: 2px solid rgba(0, 245, 255, 0.3) !important;
    border-radius: 15px !important;
    box-shadow: 0 0 20px rgba(0, 245, 255, 0.2) !important;
  }

  /* Label display */
  .gr-label-list {
    background: rgba(0, 0, 0, 0.7) !important;
    border-radius: 10px !important;
    padding: 15px !important;
  }

  /* Flashing animation */
  .processing {
    animation: pulse 1.5s ease-in-out infinite;
  }

  @keyframes pulse {
    0% { opacity: 1; }
    50% { opacity: 0.5; }
    100% { opacity: 1; }
  }

  /* Sci-fi style background pattern */
  body::before {
    content: "";
    position: fixed;
    top: 0;
    left: 0;
    width: 100%;
    height: 100%;
    background-image:
      radial-gradient(circle at 25% 25%, rgba(0, 245, 255, 0.1) 0%, transparent 25%),
      radial-gradient(circle at 75% 75%, rgba(128, 0, 255, 0.1) 0%, transparent 25%);
    pointer-events: none;
    z-index: -1;
  }
"""

MODEL_PATH = "keras_model.h5"
LABELS_PATH = "labels.txt"

# Initialize the AI system
client = AIVisionSystem(
  model_path=MODEL_PATH,
  labels_path=LABELS_PATH
)

# Create Gradio interface
with gr.Blocks(css=custom_css, title="AI 智慧回收站:次世代垃圾分類系統", theme=gr.themes.Soft(), js="""
function refresh() {
    const url = new URL(window.location);
    if (url.searchParams.get('__theme') !== 'dark') {
        url.searchParams.set('__theme', 'dark');
        window.location.href = url.href;
    }
}
""") as app:
  # Title area
  gr.HTML("""
  <div class="main-header">
      🤖 AI 智慧回收站:次世代垃圾分類系統
  </div>
  <div class="sub-header">
      ⚡ Designed by 李冠勳、陳品杉、楊恩婕、王竣毅 ⚡<br>
      🔬 塑膠 • 金屬 • 紙類 • 玻璃 🔬
  </div>
  """)

  with gr.Row():
    # Left side - Input area
    with gr.Column(scale=1):
      gr.HTML('<div style="text-align: center; color: #00f5ff; font-size: 1.5em; margin-bottom: 15px;">📡 INPUT INTERFACE</div>')

      with gr.Group(elem_classes="input-section"):
        image_input = gr.Image(
          label="Image Input Portal",
          sources=["upload", "webcam", "clipboard"],
          type="pil",
          height=300
        )

        analyze_btn = gr.Button(
          "🚀 INITIATE AI ANALYSIS",
          variant="primary",
          size="lg"
        )

    # Right side - Output area
    with gr.Column(scale=1):
      gr.HTML('<div style="text-align: center; color: #8000ff; font-size: 1.5em; margin-bottom: 15px;">📊 ANALYSIS RESULTS</div>')

      with gr.Group(elem_classes="output-section"):
        # Text results
        result_text = gr.Markdown(
          label="📋 Detailed Analysis Report",
          value="🔮 **Awaiting input...** \n\nPlease upload an image to start AI analysis",
          height=200
        )

        # Label distribution chart
        result_labels = gr.Label(
          label="🎯 Confidence Distribution",
          num_top_classes=5
        )

  gr.HTML('<div style="text-align: center; color: #00f5ff; font-size: 1.2em; margin-top: 30px;">💡 Quick Start Guide</div>')
  gr.HTML("""<div style="text-align: center; color: #ffffff; opacity: 0.8; margin: 0 0 20px;">
  1️⃣ Click the image area above to upload an image<br>
  2️⃣ Or use the WebCam for live capture<br>
  3️⃣ Or paste an image directly from the clipboard<br>
  4️⃣ Click "INITIATE AI ANALYSIS" to start analysis<br>
  5️⃣ View the real-time analysis results on the right!
  </div>
  """)

  # Set up event handling
  analyze_btn.click(
    fn=process_image,
    inputs=[image_input],
    outputs=[result_text,result_labels]
  )

  # Automatic analysis (when image changes)
  image_input.change(
    fn=process_image,
    inputs=[image_input],
    outputs=[result_text,result_labels]
  )

app.launch(
  share=False,  # Set to True to generate a public link
  debug=False,
  show_error=True, 
  show_api=False
)