File size: 2,457 Bytes
b3df9a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from flask import Flask, request, jsonify
import torch
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
import os

app = Flask(__name__)

# Initialize model and tokenizer globally
print("Loading model and tokenizer...")
MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = DistilBertTokenizer.from_pretrained(MODEL_NAME)
model = DistilBertForSequenceClassification.from_pretrained(MODEL_NAME)
model.eval()
print("Model and tokenizer loaded successfully!")

# Custom labels
CUSTOM_LABELS = {
    0: "Business/Professional",
    1: "Personal/Casual"
}

def classify_text(text):
    try:
        inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
        
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits
        
        probabilities = torch.nn.functional.softmax(logits, dim=1)
        predicted_class_id = logits.argmax().item()
        confidence = probabilities[0][predicted_class_id].item()
        
        return {
            'category': CUSTOM_LABELS[predicted_class_id],
            'confidence': round(confidence, 3),
            'all_categories': {
                label: round(prob.item(), 3) 
                for label, prob in zip(CUSTOM_LABELS.values(), probabilities[0])
            }
        }
    except Exception as e:
        print(f"Error in classify_text: {str(e)}")
        raise

@app.route('/classify', methods=['POST'])
def classify_email():
    try:
        data = request.get_json()
        
        if not data or 'subject' not in data:
            return jsonify({
                'error': 'No subject provided. Please send a JSON with "subject" field.'
            }), 400
        
        subject = data['subject']
        result = classify_text(subject)
        return jsonify(result)
    
    except Exception as e:
        print(f"Error in classify_email: {str(e)}")
        return jsonify({'error': str(e)}), 500

@app.route('/', methods=['GET'])
def home():
    return jsonify({
        'status': 'API is running',
        'model_name': MODEL_NAME,
        'usage': {
            'endpoint': '/classify',
            'method': 'POST',
            'body': {'subject': 'Your email subject here'}
        }
    })

if __name__ == '__main__':
    port = int(os.environ.get('PORT', 7860))
    print(f"Starting server on port {port}...")
    app.run(host='0.0.0.0', port=port, debug=True)