|
import cv2 |
|
from numpy import random |
|
from collections import deque |
|
import numpy as np |
|
import math |
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
|
|
from utils.google_utils import attempt_load |
|
from utils.datasets import LoadStreams, LoadImages |
|
from utils.general import ( |
|
check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, strip_optimizer) |
|
from utils.plots import plot_one_box |
|
from utils.torch_utils import select_device, load_classifier, time_synchronized |
|
|
|
from models.models import * |
|
from utils.datasets import * |
|
from utils.general import * |
|
|
|
from deep_sort_pytorch.utils.parser import get_config |
|
from deep_sort_pytorch.deep_sort import DeepSort |
|
|
|
from byte_track.bytetracker import ByteTrack |
|
from yolov7.yolov7_detector import YOLOv7Detector |
|
|
|
def load_classes(path): |
|
|
|
with open(path, 'r') as f: |
|
names = f.read().split('\n') |
|
return list(filter(None, names)) |
|
|
|
global names |
|
names = load_classes('data/coco.names') |
|
|
|
|
|
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] |
|
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1) |
|
data_deque = {} |
|
speed_four_line_queue = {} |
|
object_counter = {} |
|
|
|
|
|
|
|
line2 = [(200,500), (1050, 500)] |
|
|
|
|
|
def xyxy_to_xywh(*xyxy): |
|
"""" Calculates the relative bounding box from absolute pixel values. """ |
|
bbox_left = min([xyxy[0].item(), xyxy[2].item()]) |
|
bbox_top = min([xyxy[1].item(), xyxy[3].item()]) |
|
bbox_w = abs(xyxy[0].item() - xyxy[2].item()) |
|
bbox_h = abs(xyxy[1].item() - xyxy[3].item()) |
|
x_c = (bbox_left + bbox_w / 2) |
|
y_c = (bbox_top + bbox_h / 2) |
|
w = bbox_w |
|
h = bbox_h |
|
return x_c, y_c, w, h |
|
|
|
def xyxy_to_tlwh(bbox_xyxy): |
|
tlwh_bboxs = [] |
|
for i, box in enumerate(bbox_xyxy): |
|
x1, y1, x2, y2 = [int(i) for i in box] |
|
top = x1 |
|
left = y1 |
|
w = int(x2 - x1) |
|
h = int(y2 - y1) |
|
tlwh_obj = [top, left, w, h] |
|
tlwh_bboxs.append(tlwh_obj) |
|
return tlwh_bboxs |
|
|
|
def compute_color_for_labels(label): |
|
""" |
|
Simple function that adds fixed color depending on the class |
|
""" |
|
if label == 0: |
|
color = (85,45,255) |
|
elif label == 2: |
|
color = (222,82,175) |
|
elif label == 3: |
|
color = (0, 204, 255) |
|
elif label == 5: |
|
color = (0, 149, 255) |
|
else: |
|
color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette] |
|
return tuple(color) |
|
|
|
def draw_border(img, pt1, pt2, color, thickness, r, d): |
|
x1,y1 = pt1 |
|
x2,y2 = pt2 |
|
|
|
cv2.line(img, (x1 + r, y1), (x1 + r + d, y1), color, thickness) |
|
cv2.line(img, (x1, y1 + r), (x1, y1 + r + d), color, thickness) |
|
cv2.ellipse(img, (x1 + r, y1 + r), (r, r), 180, 0, 90, color, thickness) |
|
|
|
|
|
cv2.line(img, (x2 - r, y1), (x2 - r - d, y1), color, thickness) |
|
cv2.line(img, (x2, y1 + r), (x2, y1 + r + d), color, thickness) |
|
cv2.ellipse(img, (x2 - r, y1 + r), (r, r), 270, 0, 90, color, thickness) |
|
|
|
cv2.line(img, (x1 + r, y2), (x1 + r + d, y2), color, thickness) |
|
cv2.line(img, (x1, y2 - r), (x1, y2 - r - d), color, thickness) |
|
cv2.ellipse(img, (x1 + r, y2 - r), (r, r), 90, 0, 90, color, thickness) |
|
|
|
cv2.line(img, (x2 - r, y2), (x2 - r - d, y2), color, thickness) |
|
cv2.line(img, (x2, y2 - r), (x2, y2 - r - d), color, thickness) |
|
cv2.ellipse(img, (x2 - r, y2 - r), (r, r), 0, 0, 90, color, thickness) |
|
|
|
cv2.rectangle(img, (x1 + r, y1), (x2 - r, y2), color, -1, cv2.LINE_AA) |
|
cv2.rectangle(img, (x1, y1 + r), (x2, y2 - r - d), color, -1, cv2.LINE_AA) |
|
|
|
cv2.circle(img, (x1 +r, y1+r), 2, color, 12) |
|
cv2.circle(img, (x2 -r, y1+r), 2, color, 12) |
|
cv2.circle(img, (x1 +r, y2-r), 2, color, 12) |
|
cv2.circle(img, (x2 -r, y2-r), 2, color, 12) |
|
|
|
return img |
|
|
|
def UI_box(x, img, color=None, label=None, line_thickness=None): |
|
|
|
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 |
|
color = color or [random.randint(0, 255) for _ in range(3)] |
|
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) |
|
|
|
if label: |
|
tf = max(tl - 1, 1) |
|
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] |
|
|
|
|
|
img = draw_border(img, (c1[0], c1[1] - t_size[1] -3), (c1[0] + t_size[0], c1[1]+3), color, 1, 8, 2) |
|
|
|
|
|
|
|
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) |
|
|
|
def estimateSpeed(location1, location2): |
|
|
|
d_pixels = math.sqrt(math.pow(location2[0] - location1[0], 2) + math.pow(location2[1] - location1[1], 2)) |
|
ppm = 8 |
|
d_meters = d_pixels / ppm |
|
time_constant = 15 * 3.6 |
|
speed = d_meters * time_constant |
|
return speed |
|
|
|
|
|
def intersect(A,B,C,D): |
|
return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D) |
|
|
|
def ccw(A,B,C): |
|
return (C[1]-A[1]) * (B[0]-A[0]) > (B[1]-A[1]) * (C[0]-A[0]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def draw_boxes(img, bbox, object_id, identities=None, offset=(0, 0)): |
|
|
|
|
|
height, width, _ = img.shape |
|
|
|
for key in list(data_deque): |
|
if key not in identities: |
|
data_deque.pop(key) |
|
|
|
for i, box in enumerate(bbox): |
|
x1, y1 = int(box[0]), int(box[1]) |
|
x2, y2 = x1 + int(box[2]), y1 + int(box[3]) |
|
box=[x1, y1, x2, y2] |
|
|
|
|
|
x1 += offset[0] |
|
x2 += offset[0] |
|
y1 += offset[1] |
|
y2 += offset[1] |
|
|
|
|
|
|
|
box_height = (y2-y1) |
|
|
|
|
|
center = (int((x2+x1)/ 2), int((y2+y2)/2)) |
|
|
|
|
|
id = int(identities[i]) if identities is not None else 0 |
|
|
|
|
|
if id not in data_deque: |
|
data_deque[id] = deque(maxlen= 64) |
|
speed_four_line_queue[id] = [] |
|
|
|
color = compute_color_for_labels(int(object_id[i])) |
|
obj_name = names[int(object_id[i])] |
|
label = '%s' % (obj_name) |
|
|
|
|
|
data_deque[id].appendleft(center) |
|
|
|
|
|
|
|
|
|
if len(data_deque[id]) >= 2: |
|
|
|
|
|
if intersect(data_deque[id][0], data_deque[id][1], line2[0], line2[1]): |
|
|
|
|
|
|
|
obj_speed = estimateSpeed(data_deque[id][1], data_deque[id][0]) |
|
|
|
speed_four_line_queue[id].append(obj_speed) |
|
|
|
if obj_name not in object_counter: |
|
object_counter[obj_name] = 1 |
|
else: |
|
object_counter[obj_name] += 1 |
|
|
|
try: |
|
label = label + " " + str(sum(speed_four_line_queue[id])//len(speed_four_line_queue[id])) |
|
except : |
|
pass |
|
|
|
UI_box(box, img, label=label, color=color, line_thickness=2) |
|
|
|
|
|
for i in range(1, len(data_deque[id])): |
|
|
|
if data_deque[id][i - 1] is None or data_deque[id][i] is None: |
|
continue |
|
|
|
|
|
thickness = int(np.sqrt(64 / float(i + i)) * 1.5) |
|
|
|
|
|
cv2.line(img, data_deque[id][i - 1], data_deque[id][i], color, thickness) |
|
|
|
|
|
count = 0 |
|
for idx, (key, value) in enumerate(object_counter.items()): |
|
|
|
cnt_str = str(key) + ": " + str(value) |
|
|
|
cv2.line(img, (width - 150 ,25+ (idx*40)), (width,25 + (idx*40)), [85,45,255], 30) |
|
cv2.putText(img, cnt_str, (width - 150, 35 + (idx*40)), 0, 1, [225, 255, 255], thickness=2, lineType=cv2.LINE_AA) |
|
|
|
count += value |
|
|
|
return img, count |
|
|
|
def load_yolov7_and_process_each_frame(model, vid_name, enable_GPU, save_video, confidence, assigned_class_id, kpi1_text, kpi2_text, kpi3_text, stframe): |
|
data_deque.clear() |
|
speed_four_line_queue.clear() |
|
object_counter.clear() |
|
|
|
if model == 'yolov7': |
|
weights = 'yolov7/weights/yolov7.onnx' |
|
elif model == 'yolov7-tiny': |
|
weights = 'yolov7/weights/yolov7-tiny.onnx' |
|
else: |
|
print('Model Not Found!') |
|
exit() |
|
|
|
detector = YOLOv7Detector(weights=weights, use_cuda=enable_GPU, use_onnx=True) |
|
tracker = ByteTrack(detector) |
|
|
|
|
|
vdo = cv2.VideoCapture(vid_name) |
|
results = [] |
|
start = time.time() |
|
count = 0 |
|
frame_id = 0 |
|
prevTime = 0 |
|
|
|
fourcc = 'mp4v' |
|
fps = vdo.get(cv2.CAP_PROP_FPS) |
|
w = int(vdo.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
h = int(vdo.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
vid_writer = cv2.VideoWriter('inference/output/results.mp4', cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) |
|
|
|
while vdo.isOpened(): |
|
|
|
curr_time = time.time() |
|
frame_id +=1 |
|
_, img = vdo.read() |
|
|
|
if _ == False: |
|
break |
|
|
|
|
|
|
|
bboxes, ids, scores, obj_ids = tracker.inference(img, conf_thresh=confidence, classes=assigned_class_id) |
|
|
|
img, count = draw_boxes(img, bboxes, obj_ids, identities=ids) |
|
currTime = time.time() |
|
fps = 1 / (currTime - prevTime) |
|
prevTime = currTime |
|
|
|
|
|
cv2.line(img, (20,25), (127,25), [85,45,255], 30) |
|
cv2.putText(img, f'FPS: {int(fps)}', (11, 35), 0, 1, [225, 255, 255], thickness=2, lineType=cv2.LINE_AA) |
|
|
|
if save_video: |
|
vid_writer.write(img) |
|
|
|
kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{fps:.1f}</h1>", unsafe_allow_html=True) |
|
kpi2_text.write(f"<h1 style='text-align: center; color: red;'>{len(data_deque)}</h1>", unsafe_allow_html=True) |
|
kpi3_text.write(f"<h1 style='text-align: center; color: red;'>{count}</h1>", unsafe_allow_html=True) |
|
|
|
|
|
stframe.image(img, channels = 'BGR',use_column_width=True) |
|
|
|
|
|
end = time.time() |
|
print('Done. (%.3fs)' % (end - start)) |
|
cv2.destroyAllWindows() |
|
vdo.release() |
|
vid_writer.release() |
|
|
|
|
|
def load_yolor_and_process_each_frame(vid_name, enable_GPU, confidence, assigned_class_id, kpi1_text, kpi2_text, kpi3_text, stframe): |
|
data_deque.clear() |
|
speed_four_line_queue.clear() |
|
object_counter.clear() |
|
|
|
out, source, weights, save_txt, imgsz, cfg = \ |
|
'inference/output', vid_name, 'yolor_p6.pt', False, 1280, 'cfg/yolor_p6.cfg' |
|
|
|
|
|
webcam = source == 0 or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt') |
|
|
|
|
|
cfg_deep = get_config() |
|
cfg_deep.merge_from_file("deep_sort_pytorch/configs/deep_sort.yaml") |
|
|
|
deepsort = DeepSort(cfg_deep.DEEPSORT.REID_CKPT, |
|
max_dist=cfg_deep.DEEPSORT.MAX_DIST, min_confidence=cfg_deep.DEEPSORT.MIN_CONFIDENCE, |
|
nms_max_overlap=cfg_deep.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg_deep.DEEPSORT.MAX_IOU_DISTANCE, |
|
max_age=cfg_deep.DEEPSORT.MAX_AGE, n_init=cfg_deep.DEEPSORT.N_INIT, nn_budget=cfg_deep.DEEPSORT.NN_BUDGET, |
|
use_cuda=True) |
|
|
|
|
|
if enable_GPU: |
|
device = select_device('gpu') |
|
else: |
|
device = select_device('cpu') |
|
|
|
if os.path.exists(out): |
|
shutil.rmtree(out) |
|
os.makedirs(out) |
|
half = device.type != 'cpu' |
|
|
|
|
|
model = Darknet(cfg, imgsz) |
|
model.load_state_dict(torch.load(weights, map_location=device)['model']) |
|
model.to(device).eval() |
|
if half: |
|
model.half() |
|
|
|
|
|
classify = False |
|
if classify: |
|
modelc = load_classifier(name='resnet101', n=2) |
|
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) |
|
modelc.to(device).eval() |
|
|
|
|
|
vid_path, vid_writer = None, None |
|
if webcam: |
|
save_img = True |
|
print("HEREHERER") |
|
|
|
|
|
else: |
|
save_img = True |
|
dataset = LoadImages(source, img_size=imgsz, auto_size=64) |
|
|
|
|
|
|
|
t0 = time.time() |
|
img = torch.zeros((1, 3, imgsz, imgsz), device=device) |
|
_ = model(img.half() if half else img) if device.type != 'cpu' else None |
|
prevTime = 0 |
|
count = 0 |
|
|
|
if webcam: |
|
|
|
vid = cv2.VideoCapture(0) |
|
|
|
while vid.isOpened(): |
|
ret, img = vid.read() |
|
if not ret: |
|
continue |
|
|
|
im0s = img.copy() |
|
print(im0s.shape) |
|
img = img[:, :, ::-1].transpose(2, 0, 1) |
|
print(img.shape) |
|
|
|
img = torch.from_numpy(img.copy()).to(device) |
|
img = img.half() if half else img.float() |
|
img /= 255.0 |
|
if img.ndimension() == 3: |
|
img = img.unsqueeze(0) |
|
|
|
print(img.shape) |
|
|
|
|
|
t1 = time_synchronized() |
|
pred = model(img)[0] |
|
|
|
|
|
pred = non_max_suppression(pred, confidence, 0.5, classes=assigned_class_id, agnostic=False) |
|
t2 = time_synchronized() |
|
|
|
|
|
if classify: |
|
pred = apply_classifier(pred, modelc, img, im0s) |
|
|
|
print("HERE") |
|
|
|
for i, det in enumerate(pred): |
|
p, s, im0 = "webcam_out.mp4", '', im0s |
|
|
|
|
|
|
|
s += '%gx%g ' % img.shape[2:] |
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] |
|
if det is not None and len(det): |
|
|
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() |
|
|
|
|
|
for c in det[:, -1].unique(): |
|
n = (det[:, -1] == c).sum() |
|
s += '%g %ss, ' % (n, names[int(c)]) |
|
|
|
xywh_bboxs = [] |
|
confs = [] |
|
oids = [] |
|
|
|
for *xyxy, conf, cls in det: |
|
|
|
x_c, y_c, bbox_w, bbox_h = xyxy_to_xywh(*xyxy) |
|
xywh_obj = [x_c, y_c, bbox_w, bbox_h] |
|
xywh_bboxs.append(xywh_obj) |
|
confs.append([conf.item()]) |
|
oids.append(int(cls)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
xywhs = torch.Tensor(xywh_bboxs) |
|
confss = torch.Tensor(confs) |
|
|
|
outputs = deepsort.update(xywhs, confss, oids, im0) |
|
if len(outputs) > 0: |
|
bbox_xyxy = outputs[:, :4] |
|
identities = outputs[:, -2] |
|
object_id = outputs[:, -1] |
|
im0, count = draw_boxes(im0, bbox_xyxy, object_id,identities) |
|
|
|
|
|
print('%sDone. (%.3fs)' % (s, t2 - t1)) |
|
|
|
currTime = time.time() |
|
fps = 1 / (currTime - prevTime) |
|
prevTime = currTime |
|
cv2.line(im0, (20,25), (127,25), [85,45,255], 30) |
|
cv2.putText(im0, f'FPS: {int(fps)}', (11, 35), 0, 1, [225, 255, 255], thickness=2, lineType=cv2.LINE_AA) |
|
kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{'{:.1f}'.format(fps)}</h1>", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kpi2_text.write(f"<h1 style='text-align: center; color: red;'>{len(data_deque)}</h1>", unsafe_allow_html=True) |
|
kpi3_text.write(f"<h1 style='text-align: center; color: red;'>{count}</h1>", unsafe_allow_html=True) |
|
stframe.image(im0,channels = 'BGR',use_column_width=True) |
|
|
|
else: |
|
for path, img, im0s, vid_cap in dataset: |
|
|
|
|
|
|
|
|
|
|
|
|
|
img = torch.from_numpy(img).to(device) |
|
img = img.half() if half else img.float() |
|
img /= 255.0 |
|
if img.ndimension() == 3: |
|
img = img.unsqueeze(0) |
|
|
|
|
|
t1 = time_synchronized() |
|
print(img.shape) |
|
|
|
pred = model(img)[0] |
|
|
|
|
|
pred = non_max_suppression(pred, confidence, 0.5, classes=assigned_class_id, agnostic=False) |
|
t2 = time_synchronized() |
|
|
|
|
|
if classify: |
|
pred = apply_classifier(pred, modelc, img, im0s) |
|
|
|
|
|
for i, det in enumerate(pred): |
|
if webcam: |
|
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() |
|
else: |
|
p, s, im0 = path, '', im0s |
|
|
|
save_path = str(Path(out) / Path(p).name) |
|
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '') |
|
s += '%gx%g ' % img.shape[2:] |
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] |
|
if det is not None and len(det): |
|
|
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() |
|
|
|
|
|
for c in det[:, -1].unique(): |
|
n = (det[:, -1] == c).sum() |
|
s += '%g %ss, ' % (n, names[int(c)]) |
|
|
|
xywh_bboxs = [] |
|
confs = [] |
|
oids = [] |
|
|
|
for *xyxy, conf, cls in det: |
|
|
|
x_c, y_c, bbox_w, bbox_h = xyxy_to_xywh(*xyxy) |
|
xywh_obj = [x_c, y_c, bbox_w, bbox_h] |
|
xywh_bboxs.append(xywh_obj) |
|
confs.append([conf.item()]) |
|
oids.append(int(cls)) |
|
|
|
if save_txt: |
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() |
|
with open(txt_path + '.txt', 'a') as f: |
|
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) |
|
|
|
xywhs = torch.Tensor(xywh_bboxs) |
|
confss = torch.Tensor(confs) |
|
|
|
outputs = deepsort.update(xywhs, confss, oids, im0) |
|
if len(outputs) > 0: |
|
bbox_xyxy = outputs[:, :4] |
|
identities = outputs[:, -2] |
|
object_id = outputs[:, -1] |
|
im0, count = draw_boxes(im0, bbox_xyxy, object_id,identities) |
|
|
|
|
|
print('%sDone. (%.3fs)' % (s, t2 - t1)) |
|
|
|
currTime = time.time() |
|
fps = 1 / (currTime - prevTime) |
|
prevTime = currTime |
|
cv2.line(im0, (20,25), (127,25), [85,45,255], 30) |
|
cv2.putText(im0, f'FPS: {int(fps)}', (11, 35), 0, 1, [225, 255, 255], thickness=2, lineType=cv2.LINE_AA) |
|
kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{'{:.1f}'.format(fps)}</h1>", unsafe_allow_html=True) |
|
|
|
|
|
if save_img: |
|
if dataset.mode == 'images': |
|
cv2.imwrite(save_path, im0) |
|
else: |
|
if vid_path != save_path: |
|
vid_path = save_path |
|
if isinstance(vid_writer, cv2.VideoWriter): |
|
vid_writer.release() |
|
|
|
fourcc = 'mp4v' |
|
fps = vid_cap.get(cv2.CAP_PROP_FPS) |
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) |
|
vid_writer.write(im0) |
|
|
|
|
|
|
|
kpi2_text.write(f"<h1 style='text-align: center; color: red;'>{len(data_deque)}</h1>", unsafe_allow_html=True) |
|
kpi3_text.write(f"<h1 style='text-align: center; color: red;'>{count}</h1>", unsafe_allow_html=True) |
|
stframe.image(im0,channels = 'BGR',use_column_width=True) |
|
|
|
|
|
if save_txt or save_img: |
|
print('Results saved to %s' % Path(out)) |
|
if platform == 'darwin': |
|
os.system('open ' + save_path) |
|
|
|
print('Done. (%.3fs)' % (time.time() - t0)) |
|
cv2.destroyAllWindows() |
|
vid.release() |
|
|