Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,857 Bytes
19912cb 0d8c379 19912cb 0d8c379 19912cb 0d8c379 19912cb 0d8c379 19912cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import gradio as gr
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import torch
import torchaudio
# Load model and processor
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
model = WhisperForConditionalGeneration.from_pretrained("aiola/whisper-ner-v1")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
def unify_ner_text(text, symbols_to_replace=("/", " ", ":", "_")):
"""Process and standardize entity text by replacing certain symbols and normalizing spaces."""
text = " ".join(text.split())
for symbol in symbols_to_replace:
text = text.replace(symbol, "-")
return text.lower()
def transcribe_and_recognize_entities(audio_file, prompt):
target_sample_rate = 16000
signal, sampling_rate = torchaudio.load(audio_file)
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=target_sample_rate)
signal = resampler(signal)
if signal.ndim == 2:
signal = torch.mean(signal, dim=0)
signal = signal.cpu() # Ensure signal is on CPU for processing
input_features = processor(signal, sampling_rate=target_sample_rate, return_tensors="pt").input_features
input_features = input_features.to(device)
# Split the prompt into individual NER types and process each one
ner_types = prompt.split(',')
processed_ner_types = [unify_ner_text(ner_type.strip()) for ner_type in ner_types]
prompt = ", ".join(processed_ner_types)
print(f"Prompt after unify_ner_text: {prompt}")
prompt_ids = processor.get_prompt_ids(prompt, return_tensors="pt")
prompt_ids = prompt_ids.to(device)
predicted_ids = model.generate(
input_features,
max_new_tokens=256,
prompt_ids=prompt_ids,
language='en', # Ensure transcription is translated to English
generation_config=model.generation_config,
)
# slice only the output without the prompt itself at the start.
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
# Determine the length of the prompt in the transcription
prompt_length_in_transcription = len(prompt)
# Slice the transcription to remove the prompt itself from the output
transcription = transcription[prompt_length_in_transcription + 1:]
return transcription
# Define Gradio interface
iface = gr.Interface(
fn=transcribe_and_recognize_entities,
inputs=[
gr.Audio(label="Upload Audio", type="filepath"),
gr.Textbox(label="Entity Recognition Prompt"),
],
outputs=gr.Textbox(label="Transcription and Entities"),
title="Whisper-NER Demo",
description="Upload an audio file and enter entities to identify. The model will transcribe the audio and recognize entities."
)
# iface.launch()
iface.launch(share=True)
|