File size: 26,935 Bytes
d129378 b68ab8a f4bfa4e d129378 b4c56a0 4348906 b4c56a0 4348906 b4c56a0 d129378 b68ab8a f4bfa4e d8bbec8 15531e3 925914f f4bfa4e d8bbec8 15531e3 925914f 51a3e6d f4bfa4e 925914f f4bfa4e 925914f f4bfa4e 925914f 51a3e6d 925914f 15531e3 925914f 15531e3 d8bbec8 f4bfa4e 15531e3 d8bbec8 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a 3d0bb33 c315193 d129378 d8bbec8 4348906 e838605 b4c56a0 2290df0 c315193 51a3e6d 4348906 51a3e6d c315193 e838605 2290df0 51a3e6d c315193 925914f c315193 51a3e6d c315193 51a3e6d c315193 e838605 c315193 0e1ad49 51a3e6d 0e1ad49 c315193 aa2fa0a 4348906 aa2fa0a d8bbec8 f4bfa4e d8bbec8 d129378 d8bbec8 d129378 d8bbec8 c315193 51a3e6d f4bfa4e 925914f 51a3e6d 925914f 51a3e6d 925914f 15531e3 f4bfa4e b68ab8a d8bbec8 b68ab8a d8bbec8 b68ab8a d8bbec8 b68ab8a d8bbec8 b68ab8a d129378 d8bbec8 f4bfa4e c315193 f4bfa4e d8bbec8 d129378 b68ab8a b1dc22f b3176eb 3d0bb33 b3176eb d8bbec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
import streamlit as st
from huggingface_hub import HfApi
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import lru_cache
import time
import requests
from collections import Counter
st.set_page_config(page_title="HF Contributions", layout="wide", initial_sidebar_state="expanded")
# Set custom sidebar width - UPDATED to 40% of the screen
st.markdown("""
<style>
[data-testid="stSidebar"] {
min-width: 40vw !important;
max-width: 40vw !important;
}
</style>
""", unsafe_allow_html=True)
api = HfApi()
# Cache for API responses
@lru_cache(maxsize=1000)
def cached_repo_info(repo_id, repo_type):
return api.repo_info(repo_id=repo_id, repo_type=repo_type)
@lru_cache(maxsize=1000)
def cached_list_commits(repo_id, repo_type):
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))
@lru_cache(maxsize=100)
def cached_list_items(username, kind):
if kind == "model":
return list(api.list_models(author=username))
elif kind == "dataset":
return list(api.list_datasets(author=username))
elif kind == "space":
return list(api.list_spaces(author=username))
return []
# Function to fetch trending accounts and create stats
@lru_cache(maxsize=1)
def get_trending_accounts(limit=100):
try:
trending_data = {"spaces": [], "models": []}
# Get spaces for stats calculation
spaces_response = requests.get("https://huggingface.co/api/spaces",
params={"limit": 10000},
timeout=30)
# Get models for stats calculation
models_response = requests.get("https://huggingface.co/api/models",
params={"limit": 10000},
timeout=30)
# Process spaces data
spaces_owners = []
if spaces_response.status_code == 200:
spaces = spaces_response.json()
# Count spaces by owner
owner_counts_spaces = {}
for space in spaces:
if '/' in space.get('id', ''):
owner, _ = space.get('id', '').split('/', 1)
else:
owner = space.get('owner', '')
if owner != 'None':
owner_counts_spaces[owner] = owner_counts_spaces.get(owner, 0) + 1
# Get top owners by count for spaces
top_owners_spaces = sorted(owner_counts_spaces.items(), key=lambda x: x[1], reverse=True)[:limit]
trending_data["spaces"] = top_owners_spaces
spaces_owners = [owner for owner, _ in top_owners_spaces]
# Process models data
models_owners = []
if models_response.status_code == 200:
models = models_response.json()
# Count models by owner
owner_counts_models = {}
for model in models:
if '/' in model.get('id', ''):
owner, _ = model.get('id', '').split('/', 1)
else:
owner = model.get('owner', '')
if owner != 'None':
owner_counts_models[owner] = owner_counts_models.get(owner, 0) + 1
# Get top owners by count for models
top_owners_models = sorted(owner_counts_models.items(), key=lambda x: x[1], reverse=True)[:limit]
trending_data["models"] = top_owners_models
models_owners = [owner for owner, _ in top_owners_models]
# Combine rankings for overall trending based on appearance in both lists
combined_score = {}
for i, owner in enumerate(spaces_owners):
if owner not in combined_score:
combined_score[owner] = 0
combined_score[owner] += (limit - i) # Higher rank gives more points
for i, owner in enumerate(models_owners):
if owner not in combined_score:
combined_score[owner] = 0
combined_score[owner] += (limit - i) # Higher rank gives more points
# Sort by combined score
sorted_combined = sorted(combined_score.items(), key=lambda x: x[1], reverse=True)[:limit]
trending_authors = [owner for owner, _ in sorted_combined]
return trending_authors, trending_data["spaces"], trending_data["models"]
except Exception as e:
st.error(f"Error fetching trending accounts: {str(e)}")
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]
# Rate limiting
class RateLimiter:
def __init__(self, calls_per_second=10):
self.calls_per_second = calls_per_second
self.last_call = 0
def wait(self):
current_time = time.time()
time_since_last_call = current_time - self.last_call
if time_since_last_call < (1.0 / self.calls_per_second):
time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
self.last_call = time.time()
rate_limiter = RateLimiter()
# Function to fetch commits for a repository (optimized)
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
try:
rate_limiter.wait()
# Skip private/gated repos upfront
repo_info = cached_repo_info(repo_id, repo_type)
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
return [], []
# Get initial commit date
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
commit_dates = []
commit_count = 0
# Add initial commit if it's from the selected year
if initial_commit_date.year == selected_year:
commit_dates.append(initial_commit_date)
commit_count += 1
# Get all commits
commits = cached_list_commits(repo_id, repo_type)
for commit in commits:
commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date()
if commit_date.year == selected_year:
commit_dates.append(commit_date)
commit_count += 1
return commit_dates, commit_count
except Exception:
return [], 0
# Function to get commit events for a user (optimized)
def get_commit_events(username, kind=None, selected_year=None):
commit_dates = []
items_with_type = []
kinds = [kind] if kind else ["model", "dataset", "space"]
for k in kinds:
try:
items = cached_list_items(username, k)
items_with_type.extend((item, k) for item in items)
repo_ids = [item.id for item in items]
# Optimized parallel fetch with chunking
chunk_size = 5 # Process 5 repos at a time
for i in range(0, len(repo_ids), chunk_size):
chunk = repo_ids[i:i + chunk_size]
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
future_to_repo = {
executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id
for repo_id in chunk
}
for future in as_completed(future_to_repo):
repo_commits, repo_count = future.result()
if repo_commits: # Only extend if we got commits
commit_dates.extend(repo_commits)
except Exception as e:
st.warning(f"Error fetching {k}s for {username}: {str(e)}")
# Create DataFrame with all commits
df = pd.DataFrame(commit_dates, columns=["date"])
if not df.empty:
df = df.drop_duplicates() # Remove any duplicate dates
return df, items_with_type
# Calendar heatmap function (optimized)
def make_calendar_heatmap(df, title, year):
if df.empty:
st.info(f"No {title.lower()} found for {year}.")
return
# Optimize DataFrame operations
df["count"] = 1
df = df.groupby("date", as_index=False).sum()
df["date"] = pd.to_datetime(df["date"])
# Create date range more efficiently
start = pd.Timestamp(f"{year}-01-01")
end = pd.Timestamp(f"{year}-12-31")
all_days = pd.date_range(start=start, end=end)
# Optimize DataFrame creation and merging
heatmap_data = pd.DataFrame({"date": all_days, "count": 0})
heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y"))
heatmap_data["count"] = heatmap_data["count_y"].fillna(0)
heatmap_data = heatmap_data.drop("count_y", axis=1)
# Calculate week and day of week more efficiently
heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek
heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7
# Create pivot table more efficiently
pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0)
# Optimize month labels calculation
month_labels = pd.date_range(start, end, freq="MS").strftime("%b")
month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7)
# Create custom colormap with specific boundaries
from matplotlib.colors import ListedColormap, BoundaryNorm
colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39'] # GitHub-style green colors
bounds = [0, 1, 3, 11, 31, float('inf')] # Boundaries for color transitions
cmap = ListedColormap(colors)
norm = BoundaryNorm(bounds, cmap.N)
# Create plot more efficiently
fig, ax = plt.subplots(figsize=(12, 1.2))
# Convert pivot values to integers to ensure proper color mapping
pivot_int = pivot.astype(int)
# Create heatmap with explicit vmin and vmax
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])
ax.set_title(f"{title}", fontsize=12, pad=10)
ax.set_xlabel("")
ax.set_ylabel("")
ax.set_xticks(month_positions)
ax.set_xticklabels(month_labels, fontsize=8)
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8)
st.pyplot(fig)
# Function to fetch follower data for a user
@lru_cache(maxsize=100)
def fetch_follower_data(username):
try:
# Make API request to get follower history
# Note: This is a placeholder. Actual API endpoint may differ
url = f"https://huggingface.co/api/users/{username}/followers-history"
response = requests.get(url, timeout=30)
if response.status_code != 200:
# Simulate some data if API doesn't exist
# This is just for demonstration
import random
from dateutil.relativedelta import relativedelta
# Generate 12 months of fake data
today = datetime.now()
data = []
followers = random.randint(10, 100)
for i in range(12):
date = today - relativedelta(months=11-i)
followers += random.randint(0, 10)
data.append({
"date": date.strftime("%Y-%m-%d"),
"followers": followers
})
return data
return response.json()
except Exception as e:
st.error(f"Error fetching follower data: {str(e)}")
return []
# Function to render follower chart
def render_follower_chart(username):
follower_data = fetch_follower_data(username)
if not follower_data:
st.info(f"No follower data available for {username}")
return
# Prepare data for chart
dates = [item["date"] for item in follower_data]
followers = [item["followers"] for item in follower_data]
# Create the chart
fig, ax = plt.subplots(figsize=(12, 5))
ax.plot(dates, followers, marker='o', linestyle='-', color='#60A5FA')
# Set plot styling
ax.set_title(f"Follower Evolution for {username}", fontsize=16)
ax.set_xlabel("Date", fontsize=12)
ax.set_ylabel("Followers", fontsize=12)
# Style improvements
ax.grid(True, linestyle='--', alpha=0.7)
# Rotate date labels for better readability
plt.xticks(rotation=45)
# Tight layout to ensure everything fits
plt.tight_layout()
# Display the chart
st.pyplot(fig)
# Fetch trending accounts with a loading spinner (do this once at the beginning)
with st.spinner("Loading trending accounts..."):
trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)
# Sidebar
with st.sidebar:
st.title("π€ Contributor")
# Create tabs for Spaces and Models rankings - ONLY SHOWING FIRST TWO TABS
tab1, tab2 = st.tabs([
"Top 100 Overall Contributors",
"Top 100 by Spaces & Models"
])
with tab1:
# Show combined trending accounts list
st.subheader("π₯ Top 100 Overall Contributors")
# Display the top 100 accounts list
st.markdown("### Combined Contributors Ranking")
# Create a data frame for the table
if trending_accounts:
# Create a mapping from username to Spaces and Models rankings
spaces_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_spaces)}
models_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_models)}
# Create the overall ranking dataframe
overall_data = []
for idx, username in enumerate(trending_accounts[:100]):
# Use strings for all rankings to avoid type conversion issues
spaces_position = str(spaces_rank.get(username, "-"))
models_position = str(models_rank.get(username, "-"))
overall_data.append([username, spaces_position, models_position])
ranking_data_overall = pd.DataFrame(
overall_data,
columns=["Contributor", "Spaces Rank", "Models Rank"]
)
ranking_data_overall.index = ranking_data_overall.index + 1 # Start index from 1 for ranking
st.dataframe(
ranking_data_overall,
column_config={
"Contributor": st.column_config.TextColumn("Contributor"),
"Spaces Rank": st.column_config.TextColumn("Spaces Rank (top 100)"),
"Models Rank": st.column_config.TextColumn("Models Rank (top 100)")
},
use_container_width=True,
hide_index=False
)
with tab2:
# Show trending accounts list by Spaces
st.subheader("π Top 100 by Spaces & Models")
# Display the top 100 accounts list
st.markdown("### Spaces Contributors Ranking")
# Create a data frame for the table
if top_owners_spaces:
ranking_data_spaces = pd.DataFrame(top_owners_spaces[:100], columns=["Contributor", "Spaces Count"])
ranking_data_spaces.index = ranking_data_spaces.index + 1 # Start index from 1 for ranking
st.dataframe(
ranking_data_spaces,
column_config={
"Contributor": st.column_config.TextColumn("Contributor"),
"Spaces Count": st.column_config.NumberColumn("Spaces Count (based on top 500 spaces)", format="%d")
},
use_container_width=True,
hide_index=False
)
# Add stats expander with visualization
with st.expander("View Top 30 Spaces Contributors Chart"):
# Create a bar chart for top 30 contributors
if top_owners_spaces:
chart_data = pd.DataFrame(top_owners_spaces[:30], columns=["Owner", "Spaces Count"])
fig, ax = plt.subplots(figsize=(10, 8))
bars = ax.barh(chart_data["Owner"], chart_data["Spaces Count"])
# Add color gradient to bars
for i, bar in enumerate(bars):
bar.set_color(plt.cm.viridis(i/len(bars)))
ax.set_title("Top 30 Contributors by Number of Spaces")
ax.set_xlabel("Number of Spaces")
plt.tight_layout()
st.pyplot(fig)
# Display the top 100 Models accounts list (ADDED SECTION)
st.markdown("### Models Contributors Ranking")
# Create a data frame for the Models table
if top_owners_models:
ranking_data_models = pd.DataFrame(top_owners_models[:100], columns=["Contributor", "Models Count"])
ranking_data_models.index = ranking_data_models.index + 1 # Start index from 1 for ranking
st.dataframe(
ranking_data_models,
column_config={
"Contributor": st.column_config.TextColumn("Contributor"),
"Models Count": st.column_config.NumberColumn("Models Count (based on top 500 models)", format="%d")
},
use_container_width=True,
hide_index=False
)
# Add stats expander with visualization for Models (ADDED SECTION)
with st.expander("View Top 30 Models Contributors Chart"):
# Create a bar chart for top 30 models contributors
if top_owners_models:
chart_data = pd.DataFrame(top_owners_models[:30], columns=["Owner", "Models Count"])
fig, ax = plt.subplots(figsize=(10, 8))
bars = ax.barh(chart_data["Owner"], chart_data["Models Count"])
# Add color gradient to bars
for i, bar in enumerate(bars):
bar.set_color(plt.cm.plasma(i/len(bars))) # Using a different colormap for distinction
ax.set_title("Top 30 Contributors by Number of Models")
ax.set_xlabel("Number of Models")
plt.tight_layout()
st.pyplot(fig)
# Display trending accounts selection dropdown
st.subheader("Select Contributor")
selected_trending = st.selectbox(
"Select trending account",
options=trending_accounts[:100], # Limit to top 100
index=0 if trending_accounts else None,
key="trending_selectbox"
)
# Custom account input option
st.markdown("<div style='text-align: center; margin: 10px 0;'>OR</div>", unsafe_allow_html=True)
custom = st.text_input("Enter username/org", label_visibility="collapsed")
# Set username based on selection or custom input
if custom.strip():
username = custom.strip()
elif selected_trending:
username = selected_trending
else:
username = "facebook" # Default fallback
# Year selection
st.subheader("ποΈ Time Period")
year_options = list(range(datetime.now().year, 2017, -1))
selected_year = st.selectbox("Select Year", options=year_options)
# Additional options for customization
st.subheader("βοΈ Display Options")
show_models = st.checkbox("Show Models", value=True)
show_datasets = st.checkbox("Show Datasets", value=True)
show_spaces = st.checkbox("Show Spaces", value=True)
# Main Content
st.title("π€ Hugging Face Contributions")
if username:
with st.spinner(f"Fetching commit data for {username}..."):
# Display contributor rank if in top 30
if username in trending_accounts[:100]:
rank = trending_accounts.index(username) + 1
st.success(f"π {username} is ranked #{rank} in the top trending contributors!")
# Find user in spaces ranking
spaces_rank = None
for i, (owner, count) in enumerate(top_owners_spaces):
if owner == username:
spaces_rank = i+1
st.info(f"π Spaces Ranking: #{spaces_rank} with {count} spaces")
break
# Find user in models ranking
models_rank = None
for i, (owner, count) in enumerate(top_owners_models):
if owner == username:
models_rank = i+1
st.info(f"π§ Models Ranking: #{models_rank} with {count} models")
break
# Display combined ranking info
combined_info = []
if spaces_rank and spaces_rank <= 100:
combined_info.append(f"Spaces: #{spaces_rank}")
if models_rank and models_rank <= 100:
combined_info.append(f"Models: #{models_rank}")
if combined_info:
st.success(f"Combined Rankings (Top 100): {', '.join(combined_info)}")
# Create a dictionary to store commits by type
commits_by_type = {}
commit_counts_by_type = {}
# Determine which types to fetch based on checkboxes
types_to_fetch = []
if show_models:
types_to_fetch.append("model")
if show_datasets:
types_to_fetch.append("dataset")
if show_spaces:
types_to_fetch.append("space")
if not types_to_fetch:
st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
st.stop()
# Fetch commits for each selected type
for kind in types_to_fetch:
try:
items = cached_list_items(username, kind)
repo_ids = [item.id for item in items]
st.info(f"Found {len(repo_ids)} {kind}s for {username}")
# Process repos in chunks
chunk_size = 5
total_commits = 0
all_commit_dates = []
progress_bar = st.progress(0)
for i in range(0, len(repo_ids), chunk_size):
chunk = repo_ids[i:i + chunk_size]
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
future_to_repo = {
executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id
for repo_id in chunk
}
for future in as_completed(future_to_repo):
repo_commits, repo_count = future.result()
if repo_commits:
all_commit_dates.extend(repo_commits)
total_commits += repo_count
# Update progress
progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids)))
progress_bar.progress(progress)
# Complete progress
progress_bar.progress(1.0)
commits_by_type[kind] = all_commit_dates
commit_counts_by_type[kind] = total_commits
except Exception as e:
st.warning(f"Error fetching {kind}s for {username}: {str(e)}")
commits_by_type[kind] = []
commit_counts_by_type[kind] = 0
# Calculate total commits across all types
total_commits = sum(commit_counts_by_type.values())
st.subheader(f"{username}'s Activity in {selected_year}")
# Profile information
profile_col1, profile_col2 = st.columns([1, 3])
with profile_col1:
# Try to get avatar
try:
avatar_url = f"https://huggingface.co/avatars/{username}"
st.image(avatar_url, width=150)
except:
st.info("No profile image available")
with profile_col2:
st.metric("Total Commits", total_commits)
# Show contributor rank if in top owners
for owner, count in top_owners_spaces:
if owner.lower() == username.lower():
st.metric("Spaces Count", count)
break
st.markdown(f"[View Profile on Hugging Face](https://huggingface.co/{username})")
# Create DataFrame for all commits
all_commits = []
for commits in commits_by_type.values():
all_commits.extend(commits)
all_df = pd.DataFrame(all_commits, columns=["date"])
if not all_df.empty:
all_df = all_df.drop_duplicates() # Remove any duplicate dates
make_calendar_heatmap(all_df, "All Commits", selected_year)
# Add followers chart section
st.subheader(f"π₯ Follower Evolution for {username}")
render_follower_chart(username)
# Metrics and heatmaps for each selected type
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
for i, (kind, emoji, label) in enumerate([
("model", "π§ ", "Models"),
("dataset", "π¦", "Datasets"),
("space", "π", "Spaces")
]):
if kind in types_to_fetch:
with cols[types_to_fetch.index(kind)]:
try:
total = len(cached_list_items(username, kind))
commits = commits_by_type.get(kind, [])
commit_count = commit_counts_by_type.get(kind, 0)
df_kind = pd.DataFrame(commits, columns=["date"])
if not df_kind.empty:
df_kind = df_kind.drop_duplicates() # Remove any duplicate dates
st.metric(f"{emoji} {label}", total)
st.metric(f"Commits in {selected_year}", commit_count)
make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
except Exception as e:
st.warning(f"Error processing {label}: {str(e)}")
st.metric(f"{emoji} {label}", 0)
st.metric(f"Commits in {selected_year}", 0)
make_calendar_heatmap(pd.DataFrame(), f"{label} Commits", selected_year)
else:
st.info("Please select an account from the sidebar to view contributions.") |