File size: 23,088 Bytes
d129378
 
 
 
 
 
 
b68ab8a
 
f4bfa4e
 
d129378
 
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bfa4e
d8bbec8
 
 
925914f
 
f4bfa4e
 
 
 
d8bbec8
925914f
 
 
 
 
 
f4bfa4e
 
 
 
925914f
f4bfa4e
 
 
 
 
 
 
925914f
f4bfa4e
925914f
 
 
 
 
 
 
f4bfa4e
925914f
 
 
 
 
 
 
 
 
 
f4bfa4e
925914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bbec8
 
f4bfa4e
925914f
d8bbec8
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d129378
 
 
b68ab8a
d129378
b68ab8a
d129378
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d129378
b68ab8a
d129378
b68ab8a
 
d129378
 
 
 
 
 
 
b68ab8a
d129378
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
d129378
 
 
b68ab8a
 
 
 
 
 
d129378
b68ab8a
 
d129378
 
 
b68ab8a
 
d129378
b68ab8a
d129378
b68ab8a
 
d129378
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
d129378
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
d129378
b68ab8a
 
 
 
 
 
 
 
 
d129378
 
 
 
 
 
 
b68ab8a
c315193
 
 
 
d129378
 
 
d8bbec8
c315193
 
2290df0
c315193
 
 
2290df0
c315193
 
925914f
c315193
 
 
 
 
 
 
d8bbec8
c315193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bfa4e
c315193
 
f4bfa4e
c315193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bfa4e
c315193
 
0e1ad49
 
 
 
 
 
c315193
aa2fa0a
 
 
 
 
 
 
 
 
 
 
d8bbec8
f4bfa4e
d8bbec8
d129378
d8bbec8
 
 
 
 
 
 
d129378
 
 
 
d8bbec8
c315193
0e1ad49
f4bfa4e
 
925914f
 
 
 
 
 
 
 
 
 
 
 
f4bfa4e
b68ab8a
 
 
d8bbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b68ab8a
 
 
d8bbec8
 
b68ab8a
 
 
 
 
 
d8bbec8
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
d8bbec8
 
 
 
 
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
d129378
d8bbec8
 
 
 
 
 
 
 
 
 
 
 
 
f4bfa4e
 
c315193
f4bfa4e
 
 
 
d8bbec8
d129378
b68ab8a
 
 
 
 
 
 
 
 
d129378
d8bbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import streamlit as st
from huggingface_hub import HfApi
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import lru_cache
import time
import requests
from collections import Counter

st.set_page_config(page_title="HF Contributions", layout="wide")
api = HfApi()


# Cache for API responses
@lru_cache(maxsize=1000)
def cached_repo_info(repo_id, repo_type):
    return api.repo_info(repo_id=repo_id, repo_type=repo_type)


@lru_cache(maxsize=1000)
def cached_list_commits(repo_id, repo_type):
    return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))


@lru_cache(maxsize=100)
def cached_list_items(username, kind):
    if kind == "model":
        return list(api.list_models(author=username))
    elif kind == "dataset":
        return list(api.list_datasets(author=username))
    elif kind == "space":
        return list(api.list_spaces(author=username))
    return []


# Function to fetch trending accounts and create stats
@lru_cache(maxsize=1)
def get_trending_accounts(limit=100):
    try:
        trending_data = {"spaces": [], "models": []}
        
        # Get spaces for stats calculation
        spaces_response = requests.get("https://huggingface.co/api/spaces", 
                                      params={"limit": 10000}, 
                                      timeout=30)
        
        # Get models for stats calculation
        models_response = requests.get("https://huggingface.co/api/models", 
                                      params={"limit": 10000}, 
                                      timeout=30)
        
        # Process spaces data
        if spaces_response.status_code == 200:
            spaces = spaces_response.json()
            
            # Count spaces by owner
            owner_counts_spaces = {}
            for space in spaces:
                if '/' in space.get('id', ''):
                    owner, _ = space.get('id', '').split('/', 1)
                else:
                    owner = space.get('owner', '')
                
                if owner != 'None':
                    owner_counts_spaces[owner] = owner_counts_spaces.get(owner, 0) + 1
            
            # Get top owners by count for spaces
            top_owners_spaces = sorted(owner_counts_spaces.items(), key=lambda x: x[1], reverse=True)[:limit]
            trending_data["spaces"] = top_owners_spaces
        
        # Process models data
        if models_response.status_code == 200:
            models = models_response.json()
            
            # Count models by owner
            owner_counts_models = {}
            for model in models:
                if '/' in model.get('id', ''):
                    owner, _ = model.get('id', '').split('/', 1)
                else:
                    owner = model.get('owner', '')
                
                if owner != 'None':
                    owner_counts_models[owner] = owner_counts_models.get(owner, 0) + 1
            
            # Get top owners by count for models
            top_owners_models = sorted(owner_counts_models.items(), key=lambda x: x[1], reverse=True)[:limit]
            trending_data["models"] = top_owners_models
        
        # Combine rankings for overall trending (weighted average)
        combined_scores = {}
        
        # Add scores from spaces
        for owner, count in trending_data["spaces"]:
            if owner not in combined_scores:
                combined_scores[owner] = {"spaces": 0, "models": 0, "total": 0}
            combined_scores[owner]["spaces"] = count
        
        # Add scores from models
        for owner, count in trending_data["models"]:
            if owner not in combined_scores:
                combined_scores[owner] = {"spaces": 0, "models": 0, "total": 0}
            combined_scores[owner]["models"] = count
        
        # Calculate total score (spaces + models)
        for owner in combined_scores:
            combined_scores[owner]["total"] = combined_scores[owner]["spaces"] + combined_scores[owner]["models"]
        
        # Sort by total score
        sorted_combined = sorted(combined_scores.items(), key=lambda x: x[1]["total"], reverse=True)[:limit]
        
        # Extract just the owner names for dropdown
        trending_authors = [owner for owner, _ in sorted_combined]
        
        return trending_authors, trending_data["spaces"], trending_data["models"]
    except Exception as e:
        st.error(f"Error fetching trending accounts: {str(e)}")
        fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
        return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]


# Rate limiting
class RateLimiter:
    def __init__(self, calls_per_second=10):
        self.calls_per_second = calls_per_second
        self.last_call = 0

    def wait(self):
        current_time = time.time()
        time_since_last_call = current_time - self.last_call
        if time_since_last_call < (1.0 / self.calls_per_second):
            time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
        self.last_call = time.time()


rate_limiter = RateLimiter()


# Function to fetch commits for a repository (optimized)
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
    try:
        rate_limiter.wait()
        # Skip private/gated repos upfront
        repo_info = cached_repo_info(repo_id, repo_type)
        if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
            return [], []

        # Get initial commit date
        initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
        commit_dates = []
        commit_count = 0

        # Add initial commit if it's from the selected year
        if initial_commit_date.year == selected_year:
            commit_dates.append(initial_commit_date)
            commit_count += 1

        # Get all commits
        commits = cached_list_commits(repo_id, repo_type)
        for commit in commits:
            commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date()
            if commit_date.year == selected_year:
                commit_dates.append(commit_date)
                commit_count += 1

        return commit_dates, commit_count
    except Exception:
        return [], 0


# Function to get commit events for a user (optimized)
def get_commit_events(username, kind=None, selected_year=None):
    commit_dates = []
    items_with_type = []
    kinds = [kind] if kind else ["model", "dataset", "space"]

    for k in kinds:
        try:
            items = cached_list_items(username, k)
            items_with_type.extend((item, k) for item in items)
            repo_ids = [item.id for item in items]

            # Optimized parallel fetch with chunking
            chunk_size = 5  # Process 5 repos at a time
            for i in range(0, len(repo_ids), chunk_size):
                chunk = repo_ids[i:i + chunk_size]
                with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
                    future_to_repo = {
                        executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id
                        for repo_id in chunk
                    }
                    for future in as_completed(future_to_repo):
                        repo_commits, repo_count = future.result()
                        if repo_commits:  # Only extend if we got commits
                            commit_dates.extend(repo_commits)
        except Exception as e:
            st.warning(f"Error fetching {k}s for {username}: {str(e)}")

    # Create DataFrame with all commits
    df = pd.DataFrame(commit_dates, columns=["date"])
    if not df.empty:
        df = df.drop_duplicates()  # Remove any duplicate dates
    return df, items_with_type


# Calendar heatmap function (optimized)
def make_calendar_heatmap(df, title, year):
    if df.empty:
        st.info(f"No {title.lower()} found for {year}.")
        return

    # Optimize DataFrame operations
    df["count"] = 1
    df = df.groupby("date", as_index=False).sum()
    df["date"] = pd.to_datetime(df["date"])

    # Create date range more efficiently
    start = pd.Timestamp(f"{year}-01-01")
    end = pd.Timestamp(f"{year}-12-31")
    all_days = pd.date_range(start=start, end=end)

    # Optimize DataFrame creation and merging
    heatmap_data = pd.DataFrame({"date": all_days, "count": 0})
    heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y"))
    heatmap_data["count"] = heatmap_data["count_y"].fillna(0)
    heatmap_data = heatmap_data.drop("count_y", axis=1)

    # Calculate week and day of week more efficiently
    heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek
    heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7

    # Create pivot table more efficiently
    pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0)

    # Optimize month labels calculation
    month_labels = pd.date_range(start, end, freq="MS").strftime("%b")
    month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7)

    # Create custom colormap with specific boundaries
    from matplotlib.colors import ListedColormap, BoundaryNorm
    colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39']  # GitHub-style green colors
    bounds = [0, 1, 3, 11, 31, float('inf')]  # Boundaries for color transitions
    cmap = ListedColormap(colors)
    norm = BoundaryNorm(bounds, cmap.N)

    # Create plot more efficiently
    fig, ax = plt.subplots(figsize=(12, 1.2))

    # Convert pivot values to integers to ensure proper color mapping
    pivot_int = pivot.astype(int)

    # Create heatmap with explicit vmin and vmax
    sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
                square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])

    ax.set_title(f"{title}", fontsize=12, pad=10)
    ax.set_xlabel("")
    ax.set_ylabel("")
    ax.set_xticks(month_positions)
    ax.set_xticklabels(month_labels, fontsize=8)
    ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8)
    st.pyplot(fig)


# Fetch trending accounts with a loading spinner (do this once at the beginning)
with st.spinner("Loading trending accounts..."):
    trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)

# Sidebar
with st.sidebar:
    st.title("πŸ‘€ Contributor")
    
    # Create tabs for Spaces and Models rankings
    tab1, tab2 = st.tabs(["Spaces Ranking", "Models Ranking"])
    
    with tab1:
        # Show trending accounts list by Spaces
        st.subheader("πŸš€ Top 30 by Spaces")
        
        # Display the top 30 accounts list with their scores
        st.markdown("### Spaces Contributors Ranking")
        
        # Create a data frame for the table
        if top_owners_spaces:
            ranking_data_spaces = pd.DataFrame(top_owners_spaces[:30], columns=["Contributor", "Spaces Count"])
            ranking_data_spaces.index = ranking_data_spaces.index + 1  # Start index from 1 for ranking
            
            # Add a score column based on spaces count
            ranking_data_spaces["Score"] = ranking_data_spaces["Spaces Count"].apply(lambda x: x * 10)  # Multiply by 10 for a score metric
            
            st.dataframe(
                ranking_data_spaces,
                column_config={
                    "Contributor": st.column_config.TextColumn("Contributor"),
                    "Spaces Count": st.column_config.NumberColumn("Spaces Count (based on top 500 spaces)", format="%d"),
                    "Score": st.column_config.ProgressColumn(
                        "Score (within TOP 500 SPACES)",
                        min_value=0,
                        max_value=ranking_data_spaces["Score"].max() * 1.1,  # Add 10% to max for visual scale
                        format="%d pts"
                    )
                },
                use_container_width=True,
                hide_index=False
            )
        
        # Add stats expander with visualization
        with st.expander("View Top 30 Spaces Contributors Chart"):
            # Create a bar chart for top 30 contributors
            if top_owners_spaces:
                chart_data = pd.DataFrame(top_owners_spaces[:30], columns=["Owner", "Spaces Count"])
                
                fig, ax = plt.subplots(figsize=(10, 8))
                bars = ax.barh(chart_data["Owner"], chart_data["Spaces Count"])
                
                # Add color gradient to bars
                for i, bar in enumerate(bars):
                    bar.set_color(plt.cm.viridis(i/len(bars)))
                
                ax.set_title("Top 30 Contributors by Number of Spaces")
                ax.set_xlabel("Number of Spaces")
                plt.tight_layout()
                st.pyplot(fig)
    
    with tab2:
        # Show trending accounts list by Models
        st.subheader("🧠 Top 30 by Models")
        
        # Display the top 30 accounts list with their scores
        st.markdown("### Models Contributors Ranking")
        
        # Create a data frame for the table
        if top_owners_models:
            ranking_data_models = pd.DataFrame(top_owners_models[:30], columns=["Contributor", "Models Count"])
            ranking_data_models.index = ranking_data_models.index + 1  # Start index from 1 for ranking
            
            # Add a score column based on models count
            ranking_data_models["Score"] = ranking_data_models["Models Count"].apply(lambda x: x * 10)  # Multiply by 10 for a score metric
            
            st.dataframe(
                ranking_data_models,
                column_config={
                    "Contributor": st.column_config.TextColumn("Contributor"),
                    "Models Count": st.column_config.NumberColumn("Models Count (based on top 500 models)", format="%d"),
                    "Score": st.column_config.ProgressColumn(
                        "Score (within TOP 500 MODELS)",
                        min_value=0,
                        max_value=ranking_data_models["Score"].max() * 1.1,  # Add 10% to max for visual scale
                        format="%d pts"
                    )
                },
                use_container_width=True,
                hide_index=False
            )
        
        # Add stats expander with visualization
        with st.expander("View Top 30 Models Contributors Chart"):
            # Create a bar chart for top 30 contributors
            if top_owners_models:
                chart_data = pd.DataFrame(top_owners_models[:30], columns=["Owner", "Models Count"])
                
                fig, ax = plt.subplots(figsize=(10, 8))
                bars = ax.barh(chart_data["Owner"], chart_data["Models Count"])
                
                # Add color gradient to bars
                for i, bar in enumerate(bars):
                    bar.set_color(plt.cm.plasma(i/len(bars)))  # Use a different colormap for models
                
                ax.set_title("Top 30 Contributors by Number of Models")
                ax.set_xlabel("Number of Models")
                plt.tight_layout()
                st.pyplot(fig)
    
    # Display trending accounts selection dropdown
    st.subheader("Select Contributor")
    selected_trending = st.selectbox(
        "Select trending account",
        options=trending_accounts[:30],  # Limit to top 30
        index=0 if trending_accounts else None,
        key="trending_selectbox"
    )
    
    # Custom account input option
    st.markdown("<div style='text-align: center; margin: 10px 0;'>OR</div>", unsafe_allow_html=True)
    custom = st.text_input("", placeholder="Enter custom username/org")
    
    # Set username based on selection or custom input
    if custom.strip():
        username = custom.strip()
    elif selected_trending:
        username = selected_trending
    else:
        username = "facebook"  # Default fallback
    
    # Year selection
    st.subheader("πŸ—“οΈ Time Period")
    year_options = list(range(datetime.now().year, 2017, -1))
    selected_year = st.selectbox("Select Year", options=year_options)
    
    # Additional options for customization
    st.subheader("βš™οΈ Display Options")
    show_models = st.checkbox("Show Models", value=True)
    show_datasets = st.checkbox("Show Datasets", value=True)
    show_spaces = st.checkbox("Show Spaces", value=True)

# Main Content
st.title("πŸ€— Hugging Face Contributions")
if username:
    with st.spinner(f"Fetching commit data for {username}..."):
        # Display contributor rank if in top 30
        if username in trending_accounts[:30]:
            rank = trending_accounts.index(username) + 1
            st.success(f"πŸ† {username} is ranked #{rank} in the top trending contributors!")
            
            # Find user in spaces ranking
            for i, (owner, count) in enumerate(top_owners_spaces):
                if owner == username:
                    st.info(f"πŸš€ Spaces Ranking: #{i+1} with {count} spaces")
                    break
            
            # Find user in models ranking
            for i, (owner, count) in enumerate(top_owners_models):
                if owner == username:
                    st.info(f"🧠 Models Ranking: #{i+1} with {count} models")
                    break
        
        # Create a dictionary to store commits by type
        commits_by_type = {}
        commit_counts_by_type = {}
        
        # Determine which types to fetch based on checkboxes
        types_to_fetch = []
        if show_models:
            types_to_fetch.append("model")
        if show_datasets:
            types_to_fetch.append("dataset")
        if show_spaces:
            types_to_fetch.append("space")
        
        if not types_to_fetch:
            st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
            st.stop()

        # Fetch commits for each selected type
        for kind in types_to_fetch:
            try:
                items = cached_list_items(username, kind)
                repo_ids = [item.id for item in items]
                
                st.info(f"Found {len(repo_ids)} {kind}s for {username}")

                # Process repos in chunks
                chunk_size = 5
                total_commits = 0
                all_commit_dates = []

                progress_bar = st.progress(0)
                for i in range(0, len(repo_ids), chunk_size):
                    chunk = repo_ids[i:i + chunk_size]
                    with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
                        future_to_repo = {
                            executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id
                            for repo_id in chunk
                        }
                        for future in as_completed(future_to_repo):
                            repo_commits, repo_count = future.result()
                            if repo_commits:
                                all_commit_dates.extend(repo_commits)
                                total_commits += repo_count
                    
                    # Update progress
                    progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids)))
                    progress_bar.progress(progress)
                
                # Complete progress
                progress_bar.progress(1.0)

                commits_by_type[kind] = all_commit_dates
                commit_counts_by_type[kind] = total_commits

            except Exception as e:
                st.warning(f"Error fetching {kind}s for {username}: {str(e)}")
                commits_by_type[kind] = []
                commit_counts_by_type[kind] = 0

        # Calculate total commits across all types
        total_commits = sum(commit_counts_by_type.values())

        st.subheader(f"{username}'s Activity in {selected_year}")
        
        # Profile information
        profile_col1, profile_col2 = st.columns([1, 3])
        with profile_col1:
            # Try to get avatar
            try:
                avatar_url = f"https://huggingface.co/avatars/{username}"
                st.image(avatar_url, width=150)
            except:
                st.info("No profile image available")
        
        with profile_col2:
            st.metric("Total Commits", total_commits)
            
            # Show contributor rank if in top owners
            for owner, count in top_owners_spaces:
                if owner.lower() == username.lower():
                    st.metric("Spaces Count", count)
                    break
            
            st.markdown(f"[View Profile on Hugging Face](https://huggingface.co/{username})")

        # Create DataFrame for all commits
        all_commits = []
        for commits in commits_by_type.values():
            all_commits.extend(commits)
        all_df = pd.DataFrame(all_commits, columns=["date"])
        if not all_df.empty:
            all_df = all_df.drop_duplicates()  # Remove any duplicate dates

        make_calendar_heatmap(all_df, "All Commits", selected_year)

        # Metrics and heatmaps for each selected type
        cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
        
        for i, (kind, emoji, label) in enumerate([
            ("model", "🧠", "Models"),
            ("dataset", "πŸ“¦", "Datasets"),
            ("space", "πŸš€", "Spaces")
        ]):
            if kind in types_to_fetch:
                with cols[types_to_fetch.index(kind)]:
                    try:
                        total = len(cached_list_items(username, kind))
                        commits = commits_by_type.get(kind, [])
                        commit_count = commit_counts_by_type.get(kind, 0)
                        df_kind = pd.DataFrame(commits, columns=["date"])
                        if not df_kind.empty:
                            df_kind = df_kind.drop_duplicates()  # Remove any duplicate dates
                        st.metric(f"{emoji} {label}", total)
                        st.metric(f"Commits in {selected_year}", commit_count)
                        make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
                    except Exception as e:
                        st.warning(f"Error processing {label}: {str(e)}")
                        st.metric(f"{emoji} {label}", 0)
                        st.metric(f"Commits in {selected_year}", 0)
                        make_calendar_heatmap(pd.DataFrame(), f"{label} Commits", selected_year)
else:
    st.info("Please select an account from the sidebar to view contributions.")