File size: 22,087 Bytes
ef0925c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import gradio as gr
import torch

import os
from queue import SimpleQueue

from langchain.callbacks.manager import CallbackManager
from langchain.chat_models import ChatOpenAI
from pydantic import BaseModel
import requests
import typing
from typing import TypeVar, Generic
import math
import tqdm
from langchain.chains import ConversationalRetrievalChain
import os
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import DeepLake
import random

os.environ['OPENAI_API_KEY']='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'
os.environ['ACTIVELOOP_TOKEN']='eyJhbGciOiJIUzUxMiIsImlhdCI6MTY4MTU5NTgyOCwiZXhwIjoxNzEzMjE4MTU5fQ.eyJpZCI6ImFpc3dhcnlhcyJ9.eoiMFZsS20zzMXXupFbowUlLdgIgf_MA1ck_DByzREeoQvNm8GPhKEfqea2y1Qak-ud2jo9dhSTBTfRe1ztezw'


import os
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter

import subprocess
repo_name = "https://github.com/aiswaryasankar/memeAI.git"

from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult
from typing import Any, Union

global ticket_choices

job_done = object() # signals the processing is done

class StreamingGradioCallbackHandler(BaseCallbackHandler):
    def __init__(self, q: SimpleQueue):
        self.q = q

    def on_llm_start(
        self, serialized: typing.Dict[str, Any], prompts: typing.List[str], **kwargs: Any
    ) -> None:
        """Run when LLM starts running. Clean the queue."""
        while not self.q.empty():
            try:
                self.q.get(block=False)
            except Empty:
                continue

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Run on new LLM token. Only available when streaming is enabled."""
        self.q.put(token)

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Run when LLM ends running."""
        self.q.put(job_done)

    def on_llm_error(
        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
    ) -> None:
        """Run when LLM errors."""
        self.q.put(job_done)


class Response(BaseModel):
    result: typing.Any
    error: str
    stdout: str
    repo: str

class HumanPrompt(BaseModel):
    prompt: str

class GithubResponse(BaseModel):
    result: typing.Any
    error: str
    stdout: str
    repo: str


embeddings = OpenAIEmbeddings(disallowed_special=())


def git_clone(repo_url):
    subprocess.run(["git", "clone", repo_url])
    dirpath = repo_url.split('/')[-1]
    if dirpath.lower().endswith('.git'):
        dirpath = dirpath[:-4]
    return dirpath


def index_repo(repo: str) -> Response:
    pathName = git_clone(repo)
    root_dir = './' + pathName

    docs = []
    for dirpath, dirnames, filenames in os.walk(root_dir):
        for file in filenames:
            try:
                loader = TextLoader(os.path.join(dirpath, file), encoding='utf-8')
                docs.extend(loader.load_and_split())
            except Exception as e:
                print("Exception: " + str(e) + "| File: " + os.path.join(dirpath, file))
                pass

    activeloop_username = "aiswaryas"
    dataset_path = f"hub://{activeloop_username}/" + pathName
    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
    texts = text_splitter.split_documents(docs)

    print(texts)
    for text in texts:
        print(text)

    try:
        db = DeepLake(dataset_path=dataset_path,
                        embedding_function=embeddings,
                        token=os.environ['ACTIVELOOP_TOKEN'], read_only=False)
        # NOTE: read_only=False because we want to ingest documents
        # NOTE: This will raise a `deeplake.util.exceptions.LockedException` if dataset is already locked
        # NOTE: change it to read_only=True when querying the dataset

        # Delete dataset if not empty:
        if len(db.ds) > 0:
            print("Dataset not empty. Deleting existing dataset...")
            db.ds.delete()
            print("Done.")
            # Reinitialize
            db = DeepLake(dataset_path=dataset_path,
                            embedding_function=embeddings,
                            token=os.environ['ACTIVELOOP_TOKEN'], read_only=False)

    except Exception as e:
        return Response(
            result= "Failed to index github repo",
            repo="",
            error=str(e),
            stdout="",
        )

    try:
        db.add_documents(texts)

    except Exception as e:
        return Response(
            result= "Failed to index github repo",
            repo="",
            error=str(e),
            stdout="",
        )

    finally:
        db.ds._unlock()

    return "SUCCESS"


def answer_questions(question: str, github: str, **kwargs) -> Response:

    global repo_name
    github = repo_name[:-4]
    try:
        embeddings = OpenAIEmbeddings(openai_api_key="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")
        pathName = github.split('/')[-1]
        dataset_path = "hub://aiswaryas/" + pathName

        db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)

        print("finished indexing repo")
        retriever = db.as_retriever()
        retriever.search_kwargs['distance_metric'] = 'cos'
        retriever.search_kwargs['fetch_k'] = 100
        retriever.search_kwargs['maximal_marginal_relevance'] = True
        retriever.search_kwargs['k'] = 20

        q = SimpleQueue()

        model = ChatOpenAI(
            model_name='gpt-4',
            temperature=0.0,
            verbose=True,
            streaming=True,  # Pass `streaming=True` to make sure the client receives the data.
            callback_manager=CallbackManager(
                [StreamingGradioCallbackHandler(q)]
            ),
            openai_api_key="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",
        )
        qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
        chat_history = []

    except Exception as e:

        print("Exception: " + str(e))
        return Response(
            result="",
            repo="",
            error=str(e),
            stdout="",
        )

    return Response(
        result=qa({"question": question, "chat_history": chat_history}),
        repo="",
        error="",
        stdout="",
    )

def fetchGithubIssues(repo: str, num_issues:int, **kwargs) -> Response:
    """
        This endpoint should get a list of all the github issues that are open for this repository
    """

    batch = []
    all_issues = []
    per_page = 100  # Number of issues to return per page
    num_pages = math.ceil(num_issues / per_page)
    base_url = "https://api.github.com/repos"

    GITHUB_TOKEN = "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"  # Copy your GitHub token here
    headers = {"Authorization": f"token {GITHUB_TOKEN}"}

    issues_data = []

    for page in range(num_pages):
        # Query with state=all to get both open and closed issues
        query = f"issues?page={page}&per_page={per_page}&state=all"
        issues = requests.get(f"{base_url}/{repo}/{query}", headers=headers)

        batch.extend(issues.json())
        for issue in issues.json():
          issues_data.append({
              "issue_url": issue["url"],
              "title": issue["title"],
              "body": issue["body"],
              "comments_url": issue["comments_url"],
          })

    print(issues_data)
    return  issues_data


def generateFolderNamesForRepo(repo):
    """
        This endpoint will first take the repo structure and return the folder and subfolder names.
        From those names, it will then prompt the model to generate an architecture diagram of that folder.
        There will be three "modules" no input just output that take the autogenerated prompts based on the
        input data and generate the responses that are displayed in the UI.
    """
    pathName = git_clone(repo)
    root_dir = './' + pathName

    files, dirs, docs = [], [], []
    for dirpath, dirnames, filenames in os.walk(root_dir):
        for file in filenames:
            try:
                loader = TextLoader(os.path.join(dirpath, file), encoding='utf-8')
                docs.extend(loader.load_and_split())
                files.append(file)
                dirs.append(dirnames)
            except Exception as e:
                print("Exception: " + str(e) + "| File: " + os.path.join(dirpath, file))
                pass

    return dirs[0]

def generateDocumentationPerFolder(dir, github):

  if dir == "overview":
    prompt= """
        Summarize the structure of the memeAI repository.  Make a list of all endpoints and their behavior.  Explain
        how this module is used in the scope of the larger project.  Format the response as code documentation with an
        Overview, Architecture and Implementation Details.  Within implementation details, list out each function and provide
        an overview of that function.
    """.format(dir)
  else:
    prompt= """
        Summarize how {} is implemented in the memeAI repository.  Make a list of all functions and their behavior.  Explain
        how this module is used in the scope of the larger project.  Format the response as code documentation with an
        Overview, Architecture and Implementation Details.  Within implementation details, list out each function and provide
        an overview of that function.
    """.format(dir)

  print(prompt)
  try:
    embeddings = OpenAIEmbeddings(openai_api_key="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")
    pathName = github.split('/')[-1]
    dataset_path = "hub://aiswaryas/" + pathName

    db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)

    # print("finished indexing repo")
    retriever = db.as_retriever()
    retriever.search_kwargs['distance_metric'] = 'cos'
    retriever.search_kwargs['fetch_k'] = 100
    retriever.search_kwargs['maximal_marginal_relevance'] = True
    retriever.search_kwargs['k'] = 20

    # streaming_handler = kwargs.get('streaming_handler')
    model = ChatOpenAI(
        model_name='gpt-4',
        temperature=0.0,
        verbose=True,
        streaming=True,  # Pass `streaming=True` to make sure the client receives the data.
        openai_api_key="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",
    )
    qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
    chat_history = []

  except Exception as e:
    return str(e)

#   history[-1][1] = ""
#   for char in qa({"question": prompt, "chat_history": chat_history}):
#     history[-1][1] += char
#     time.sleep(0.01)
#     yield history

  return qa({"question": prompt, "chat_history": chat_history})["answer"]
  return response["answer"]


def generateArchitectureDiagram(folder) -> Response:
    """
        This endpoint should generate a Mermaid diagram for the given input files.  It will return the
    """


def solveGithubIssue(ticket, history) -> Response:
    """
        This endpoint takes in a github issue and then queries the db for the question against the codebase.
    """
    print(history)
    global repo_name, ticket_choices
    github = repo_name[:-4]
    repoFolder = github.split("/")[-1]
    body = ticket_choices[ticket]["body"]
    title = ticket_choices[ticket]["title"]
    question = """
      Given the code in the {} repo, propose a solution for this ticket {} that includes a
      high level implementation, narrowing down the root cause of the issue and psuedocode if
      applicable on how to resolve the issue. If multiple changes are required to address the
      problem, list out each of the steps and a brief explanation for each one.
    """.format(repoFolder, body)

    q_display = """
        How would I approach solving this ticket: {}.  Here is a summary of the issue: {}
    """.format(title, body)

    print(question)

    try:
        embeddings = OpenAIEmbeddings(openai_api_key="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")
        pathName = github.split('/')[-1]
        dataset_path = "hub://aiswaryas/" + pathName

        db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)

        # print("finished indexing repo")
        retriever = db.as_retriever()
        retriever.search_kwargs['distance_metric'] = 'cos'
        retriever.search_kwargs['fetch_k'] = 100
        retriever.search_kwargs['maximal_marginal_relevance'] = True
        retriever.search_kwargs['k'] = 20

        q = SimpleQueue()
        model = ChatOpenAI(
            model_name='gpt-4',
            temperature=0.0,
            verbose=True,
            streaming=True,  # Pass `streaming=True` to make sure the client receives the data.
            callback_manager=CallbackManager(
                [StreamingGradioCallbackHandler(q)]
            ),
            openai_api_key="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",
        )
        qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)

    except Exception as e:
        return [[str(e), None]]

    history = [[q_display, ""]]
    history[-1][1] = ""
    for char in qa({"question": prompt, "chat_history": chat_history}):
        history[-1][1] += char
        time.sleep(0.01)
        yield history

    # return [[qa({"question": question, "chat_history": chat_history})["answer"], None]]


def user(message, history):
    return "", history + [[message, None]]


def bot(history, **kwargs):
    print(history)
    user_message = history[-1][0]
    global repo_name
    github = repo_name[:-4]
    try:
        embeddings = OpenAIEmbeddings(openai_api_key="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")
        pathName = github.split('/')[-1]
        dataset_path = "hub://aiswaryas/" + pathName

        db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)

        print("finished indexing repo")
        retriever = db.as_retriever()
        retriever.search_kwargs['distance_metric'] = 'cos'
        retriever.search_kwargs['fetch_k'] = 100
        retriever.search_kwargs['maximal_marginal_relevance'] = True
        retriever.search_kwargs['k'] = 20

        q = SimpleQueue()
        model = ChatOpenAI(
            model_name='gpt-4',
            temperature=0.0,
            verbose=True,
            streaming=True,  # Pass `streaming=True` to make sure the client receives the data.
            callback_manager=CallbackManager(
                [StreamingGradioCallbackHandler(q)]
            ),
            openai_api_key="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",
        )
        qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
        chat_history = []

    except Exception as e:
        print("Exception: " + str(e))
        return str(e)

    history[-1][1] = ""
    for char in qa({"question": user_message, "chat_history": chat_history})["answer"]:
      history[-1][1] += char
      yield history


with gr.Blocks() as demo:

    gr.Markdown("""
    # Entelligence AI

    Enabling your product team to ship product 10x faster.
    """)

    repoTextBox = gr.Textbox(label="Github Repository")
    repo_name = "https://github.com/aiswaryasankar/memeAI.git"
    # def update_state(value):
    #   repo_name.value = value
    #   return value

    # repoTextBox.change(update_state, repoTextBox)
    # print(repo_name.value)
    success_response = gr.Textbox(label="")
    ingest_btn = gr.Button("Index repo")
    ingest_btn.click(fn=index_repo, inputs=repoTextBox, outputs=success_response, api_name="index_repo")


    # Toggle visibility of the chat, bugs, docs, model windows
    with gr.Tab("Code Chat"):
        chatbot = gr.Chatbot()
        msg = gr.Textbox()
        clear = gr.Button("Clear")

        msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
            bot, chatbot, chatbot
        )
        clear.click(lambda: None, None, chatbot, queue=False)


    index = 0
    with gr.Tab("Bug Triage"):

      # Display the titles in the dropdown
      def create_ticket_dropdown(tickets):

        return gr.Dropdown.update(
            choices=titles, value=titles[0]
        ), gr.update(visible=True)

      # Here you want to first call the getGithubIssues function
      # repo = gr.Interface.get_session_state("repo")
      print(repo_name)
      repo = "/".join(repo_name[:-4].split("/")[-2:])
      tickets = fetchGithubIssues(repo, 10)

      # Create the dropdown
      global ticket_choices
      ticket_choices = {ticket["title"]: ticket for ticket in tickets}
      ticket_titles = [ticket["title"] for ticket in tickets]

      ticketDropdown = gr.Dropdown(choices=ticket_titles, title="Github Issues")

      # Extract the ticket title, body for the selected ticket
      chatbot = gr.Chatbot()
      msg = gr.Textbox()
      clear = gr.Button("Clear")

      if index == 0:
        msg.submit(solveGithubIssue, [ticketDropdown, chatbot], [msg, chatbot], queue=False).then(
            bot, chatbot, chatbot
        )
        ticketDropdown.change(solveGithubIssue, inputs=[ticketDropdown, chatbot], outputs=[chatbot])
        index += 1
      else:
        msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
            bot, chatbot, chatbot
        )
        index += 1
      clear.click(lambda: None, None, chatbot, queue=False)


    with gr.Tab("AI Code Documentation"):
      # First parse through the folder structure and store that as a list of clickable buttons
      gr.Markdown("""
        ## AI Generated Code Documentation

        Code documentation comes in 3 flavors - internal engineering, external API documentation and product documentation.  Each offers different layers of abstraction over the code base.
      """)

      #   docs = generateDocumentationPerFolder("overview", repo_name)
      #   markdown = gr.Markdown(value=docs)

      def button_click_callback(label):
        docs = generateDocumentationPerFolder(label, repo_name[:-4])
        markdown.update(docs)

      # Generate the left column buttons and their names and wrap each one in a function
      with gr.Row():
        with gr.Column(scale=.5, min_width=300):
            dirNames = generateFolderNamesForRepo(repo_name[:-4])
            print(dirNames)
            buttons = [gr.Button(folder_name, onclick=button_click_callback) for folder_name in dirNames]

        # Generate the overall documentation for the main bubble at the same time
        with gr.Column(scale=2, min_width=300):
            docs = generateDocumentationPerFolder("overview", repo_name[:-4])
            markdown = gr.Markdown(value=docs)
            # markdown.update(docs)


      # For each folder, generate a diagram and 2-3 prompts that dive deeper into explaining content


      # Render all the content in the UI

      #

    with gr.Tab("Custom Model Finetuning"):
      # First provide a summary of offering
      gr.Markdown("""
        ## Enterprise Custom Model Finetuning

        Finetuning code generation models directly on your enterprise code base has shown up to 10% increase in model suggestion acceptance rate.
        """)

      # Choose base model - radio with model size
      gr.Radio(choices=["Santacoder (1.1B parameter model)", "Incoder (6B parameter model)", "Codegen (16B parameter model)", "Starcoder (15.5B parameter model)"] , value="Starcoder (15.5B parameter model)")

      # Choose existing code base or input a new code base for finetuning -
      with gr.Row():
        gr.Markdown("""
            If you'd like to use the current code base, click this toggle otherwise input the entire code base below.
        """)
        existing_repo = gr.Checkbox(value=True, label="Use existing repository")
      gr.Textbox(label="Input repository", visible=False)

      # Allow option to remove generated files etc
      gr.Markdown("""
        Finetuned model performance is highly dependent on training data quality. We have currently found that excluding the following file types improves performance. If you'd like to include them, please toggle them.
      """)
      file_types = gr.CheckboxGroup(choices=['.bin', '.gen', '.git', '.gz','.jpg', '.lz', '.midi', '.mpq','.png', '.tz'], label="Removed file types")

      # Based on data above, we should show a field for estimated fine tuning cost
      # Then we should show the chart for loss
      def wandb_report(url):
        iframe = f'<iframe src={url} style="border:none;height:1024px;width:100%">'
        return gr.HTML(iframe)

      submit_btn = gr.Button("Start Training")
      with gr.Column(visible=False) as start_training:
        # Include the epoch loss table
        epoch_loss = gr.Dataframe(
            headers=["Step", "Training Loss", "Validation Loss"],
            datatype=["number", "number", "number"],
            row_count=5,
            col_count=(3, "fixed"),
            value=[[500, 1.868200, 1.548535], [1000, 1.450100, 1.518277], [1500, 1.659000, 1.486497],
            [2000, 1.364900, 1.452842], [2500, 1.406300, 1.405151], [3000, 1.276000, 1.346159]]
        )

        # After you start training you should see the Wandb report
        report_url = 'https://wandb.ai/aiswaryasankar/aiswarya-santacoder-finetuning/reports/Aiswarya-Santacoder-Finetuning--Vmlldzo0ODM3MDA4'
        report = wandb_report(report_url)

        # Include a playground to compare different models on given tasks
        # Link to the generated huggingface spaces model if you opt into it
        # Toggle to select model for the remaining functionality

      def startTraining(): # existing_repo, file_types
        start_training= gr.update(visible=True)
        # return {
        #     report: report,
        #     epoch_loss: epoch_loss,
        #     start_training: gr.update(visible=True),
        # }

      submit_btn.click(
        startTraining,
        # inputs=[existing_repo, file_types],
        # outputs=[start_training], # report, epoch_loss,
      )

demo.launch(debug=True, share=True)