File size: 2,075 Bytes
0b34d84
 
 
 
 
 
 
 
 
5763b68
0b34d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec3c939
0b34d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14df1c4
 
 
2fc2673
 
 
 
14df1c4
 
 
3208e74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import logging
import sys

logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))

from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
from llama_index.llms import HuggingFaceLLM

documents = SimpleDirectoryReader("./data").load_data()

from llama_index.prompts.prompts import SimpleInputPrompt


system_prompt = "You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided."



# This will wrap the default prompts that are internal to llama-index
query_wrapper_prompt = SimpleInputPrompt("<|USER|>{query_str}<|ASSISTANT|>")

import torch

llm = HuggingFaceLLM(
    context_window=4096,
    max_new_tokens=256,
    generate_kwargs={"temperature": 0.0, "do_sample": False},
    system_prompt=system_prompt,
    query_wrapper_prompt=query_wrapper_prompt,
    tokenizer_name="NousResearch/Llama-2-7b-hf",
    model_name="NousResearch/Llama-2-7b-hf",
    device_map="auto",
    # uncomment this if using CUDA to reduce memory usage
    # model_kwargs={"torch_dtype": torch.float16 , "load_in_8bit":False}
)

from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from llama_index import LangchainEmbedding, ServiceContext

embed_model = LangchainEmbedding(
  HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
)

service_context = ServiceContext.from_defaults(
    chunk_size=1024,
    llm=llm,
    embed_model=embed_model
)

index = VectorStoreIndex.from_documents(documents, service_context=service_context)

#query_engine = index.as_query_engine()
#response = query_engine.query("what is the name of this document?")

#print(response)


import gradio as gr
def random_response(message, history):
  query_engine = index.as_query_engine()
  response = query_engine.query("according to the document provided,"+message)
  print(response)
  return str(response)

demo = gr.ChatInterface(random_response)
if __name__ == "__main__":
    demo.queue().launch(debug=True)