llama / app.py
aiwithankit's picture
Update app.py
ec3c939
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
from llama_index.llms import HuggingFaceLLM
documents = SimpleDirectoryReader("./data").load_data()
from llama_index.prompts.prompts import SimpleInputPrompt
system_prompt = "You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided."
# This will wrap the default prompts that are internal to llama-index
query_wrapper_prompt = SimpleInputPrompt("<|USER|>{query_str}<|ASSISTANT|>")
import torch
llm = HuggingFaceLLM(
context_window=4096,
max_new_tokens=256,
generate_kwargs={"temperature": 0.0, "do_sample": False},
system_prompt=system_prompt,
query_wrapper_prompt=query_wrapper_prompt,
tokenizer_name="NousResearch/Llama-2-7b-hf",
model_name="NousResearch/Llama-2-7b-hf",
device_map="auto",
# uncomment this if using CUDA to reduce memory usage
# model_kwargs={"torch_dtype": torch.float16 , "load_in_8bit":False}
)
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from llama_index import LangchainEmbedding, ServiceContext
embed_model = LangchainEmbedding(
HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
)
service_context = ServiceContext.from_defaults(
chunk_size=1024,
llm=llm,
embed_model=embed_model
)
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
#query_engine = index.as_query_engine()
#response = query_engine.query("what is the name of this document?")
#print(response)
import gradio as gr
def random_response(message, history):
query_engine = index.as_query_engine()
response = query_engine.query("according to the document provided,"+message)
print(response)
return str(response)
demo = gr.ChatInterface(random_response)
if __name__ == "__main__":
demo.queue().launch(debug=True)