File size: 1,364 Bytes
93f5629 433b282 17c8406 93f5629 e61f1f2 433b282 e61f1f2 93f5629 f43015f 93f5629 f43015f 93f5629 50d9ba1 17c8406 93f5629 f43015f 93f5629 f43015f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import gradio as gr
# from transformers import AutoBackbone, AutoModelForImageClassification, AutoImageProcessor, Swinv2ForImageClassification
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification
from torchvision import transforms
# model = AutoModelForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
# image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy")
image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy")
# image_processor = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
model = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
clf = pipeline(model=model, task="image-classification", image_processor=image_processor)
class_names = ['artificial', 'real']
def predict_image(img):
img = transforms.ToPILImage()(img)
img = transforms.Resize((256,256))(img)
prediction=clf.predict(img)
print(prediction)
print(model.config.id2label[predicted_label])
return {class_names[i]: float(prediction[i]["score"]) for i in range(2)}
image = gr.Image(label="Image to Analyze", sources=['upload'])
label = gr.Label(num_top_classes=2)
gr.Interface(fn=predict_image, inputs=image, outputs=label, title="AI Generated Classification").launch() |