|
import spaces |
|
import gradio as gr |
|
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification |
|
from torchvision import transforms |
|
import torch |
|
from PIL import Image |
|
import warnings |
|
|
|
|
|
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset") |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True) |
|
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") |
|
model_1 = model_1.to(device) |
|
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) |
|
|
|
|
|
model_2_path = "Heem2/AI-vs-Real-Image-Detection" |
|
clf_2 = pipeline("image-classification", model=model_2_path) |
|
|
|
|
|
class_names_1 = ['artificial', 'real'] |
|
class_names_2 = ['AI Image', 'Real Image'] |
|
|
|
def predict_image(img, confidence_threshold): |
|
|
|
if not isinstance(img, Image.Image): |
|
raise ValueError(f"Expected a PIL Image, but got {type(img)}") |
|
|
|
|
|
if img.mode != 'RGB': |
|
img_pil = img.convert('RGB') |
|
else: |
|
img_pil = img |
|
|
|
|
|
img_pil = transforms.Resize((256, 256))(img_pil) |
|
|
|
|
|
try: |
|
prediction_1 = clf_1(img_pil) |
|
result_1 = {pred['label']: pred['score'] for pred in prediction_1} |
|
|
|
|
|
for class_name in class_names_1: |
|
if class_name not in result_1: |
|
result_1[class_name] = 0.0 |
|
|
|
|
|
if result_1['artificial'] >= confidence_threshold: |
|
label_1 = f"Label: artificial, Confidence: {result_1['artificial']:.4f}" |
|
elif result_1['real'] >= confidence_threshold: |
|
label_1 = f"Label: real, Confidence: {result_1['real']:.4f}" |
|
else: |
|
label_1 = "Uncertain Classification" |
|
except Exception as e: |
|
label_1 = f"Error: {str(e)}" |
|
|
|
|
|
try: |
|
prediction_2 = clf_2(img_pil) |
|
result_2 = {pred['label']: pred['score'] for pred in prediction_2} |
|
|
|
|
|
for class_name in class_names_2: |
|
if class_name not in result_2: |
|
result_2[class_name] = 0.0 |
|
|
|
|
|
if result_2['AI Image'] >= confidence_threshold: |
|
label_2 = f"Label: AI Image, Confidence: {result_2['AI Image']:.4f}" |
|
elif result_2['Real Image'] >= confidence_threshold: |
|
label_2 = f"Label: Real Image, Confidence: {result_2['Real Image']:.4f}" |
|
else: |
|
label_2 = "Uncertain Classification" |
|
except Exception as e: |
|
label_2 = f"Error: {str(e)}" |
|
|
|
|
|
combined_results = { |
|
"SwinV2": label_1, |
|
"AI-vs-Real-Image-Detection": label_2 |
|
} |
|
|
|
return combined_results |
|
|
|
|
|
image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil') |
|
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold") |
|
label = gr.JSON(label="Model Predictions") |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict_image, |
|
inputs=[image, confidence_slider], |
|
outputs=label, |
|
title="AI Generated Classification" |
|
) |
|
iface.launch() |