LPX55's picture
Update app.py
8a3f635 verified
raw
history blame
3.86 kB
import spaces
import gradio as gr
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import warnings
# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the first model and processor
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
model_1 = model_1.to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
# Load the second model
model_2_path = "Heem2/AI-vs-Real-Image-Detection"
clf_2 = pipeline("image-classification", model=model_2_path)
# Define class names for both models
class_names_1 = ['artificial', 'real']
class_names_2 = ['AI Image', 'Real Image'] # Adjust if the second model has different classes
def predict_image(img, confidence_threshold):
# Ensure the image is a PIL Image
if not isinstance(img, Image.Image):
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
# Convert the image to RGB if not already
if img.mode != 'RGB':
img_pil = img.convert('RGB')
else:
img_pil = img
# Resize the image
img_pil = transforms.Resize((256, 256))(img_pil)
# Predict using the first model
try:
prediction_1 = clf_1(img_pil)
result_1 = {pred['label']: pred['score'] for pred in prediction_1}
# Ensure the result dictionary contains all class names
for class_name in class_names_1:
if class_name not in result_1:
result_1[class_name] = 0.0
# Check if either class meets the confidence threshold
if result_1['artificial'] >= confidence_threshold:
label_1 = f"Label: artificial, Confidence: {result_1['artificial']:.4f}"
elif result_1['real'] >= confidence_threshold:
label_1 = f"Label: real, Confidence: {result_1['real']:.4f}"
else:
label_1 = "Uncertain Classification"
except Exception as e:
label_1 = f"Error: {str(e)}"
# Predict using the second model
try:
prediction_2 = clf_2(img_pil)
result_2 = {pred['label']: pred['score'] for pred in prediction_2}
# Ensure the result dictionary contains all class names
for class_name in class_names_2:
if class_name not in result_2:
result_2[class_name] = 0.0
# Check if either class meets the confidence threshold
if result_2['AI Image'] >= confidence_threshold:
label_2 = f"Label: AI Image, Confidence: {result_2['AI Image']:.4f}"
elif result_2['Real Image'] >= confidence_threshold:
label_2 = f"Label: Real Image, Confidence: {result_2['Real Image']:.4f}"
else:
label_2 = "Uncertain Classification"
except Exception as e:
label_2 = f"Error: {str(e)}"
# Combine results
combined_results = {
"SwinV2": label_1,
"AI-vs-Real-Image-Detection": label_2
}
return combined_results
# Define the Gradio interface
image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil') # Ensure the image type is PIL
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
label = gr.JSON(label="Model Predictions")
# Launch the interface
iface = gr.Interface(
fn=predict_image,
inputs=[image, confidence_slider],
outputs=label,
title="AI Generated Classification"
)
iface.launch()