File size: 3,864 Bytes
93a8bce
93f5629
17c8406
93f5629
e88a32d
12cea06
b1387d5
 
 
 
e88a32d
 
 
93f5629
52ae10e
b1387d5
52ae10e
 
 
93f5629
52ae10e
fa24808
 
52ae10e
 
 
fa24808
93f5629
e88a32d
52ae10e
7820a52
 
 
 
 
 
 
 
 
 
12cea06
a9d7990
52ae10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9d7990
52ae10e
 
 
 
 
 
 
 
 
 
 
b1387d5
 
 
 
52ae10e
 
 
 
a9d7990
52ae10e
 
 
 
 
a9d7990
52ae10e
 
a9d7990
12cea06
e88a32d
52ae10e
e88a32d
8a3f635
e077442
e88a32d
 
 
e077442
 
8a3f635
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import spaces
import gradio as gr
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import warnings

# Suppress warnings
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")

# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Load the first model and processor
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
model_1 = model_1.to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)

# Load the second model
model_2_path = "Heem2/AI-vs-Real-Image-Detection"
clf_2 = pipeline("image-classification", model=model_2_path)

# Define class names for both models
class_names_1 = ['artificial', 'real']
class_names_2 = ['AI Image', 'Real Image']  # Adjust if the second model has different classes

def predict_image(img, confidence_threshold):
    # Ensure the image is a PIL Image
    if not isinstance(img, Image.Image):
        raise ValueError(f"Expected a PIL Image, but got {type(img)}")
    
    # Convert the image to RGB if not already
    if img.mode != 'RGB':
        img_pil = img.convert('RGB')
    else:
        img_pil = img
    
    # Resize the image
    img_pil = transforms.Resize((256, 256))(img_pil)
    
    # Predict using the first model
    try:
        prediction_1 = clf_1(img_pil)
        result_1 = {pred['label']: pred['score'] for pred in prediction_1}
        
        # Ensure the result dictionary contains all class names
        for class_name in class_names_1:
            if class_name not in result_1:
                result_1[class_name] = 0.0
        
        # Check if either class meets the confidence threshold
        if result_1['artificial'] >= confidence_threshold:
            label_1 = f"Label: artificial, Confidence: {result_1['artificial']:.4f}"
        elif result_1['real'] >= confidence_threshold:
            label_1 = f"Label: real, Confidence: {result_1['real']:.4f}"
        else:
            label_1 = "Uncertain Classification"
    except Exception as e:
        label_1 = f"Error: {str(e)}"
    
    # Predict using the second model
    try:
        prediction_2 = clf_2(img_pil)
        result_2 = {pred['label']: pred['score'] for pred in prediction_2}
        
        # Ensure the result dictionary contains all class names
        for class_name in class_names_2:
            if class_name not in result_2:
                result_2[class_name] = 0.0
        
        # Check if either class meets the confidence threshold
        if result_2['AI Image'] >= confidence_threshold:
            label_2 = f"Label: AI Image, Confidence: {result_2['AI Image']:.4f}"
        elif result_2['Real Image'] >= confidence_threshold:
            label_2 = f"Label: Real Image, Confidence: {result_2['Real Image']:.4f}"
        else:
            label_2 = "Uncertain Classification"
    except Exception as e:
        label_2 = f"Error: {str(e)}"
    
    # Combine results
    combined_results = {
        "SwinV2": label_1,
        "AI-vs-Real-Image-Detection": label_2
    }
    
    return combined_results

# Define the Gradio interface
image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil')  # Ensure the image type is PIL
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
label = gr.JSON(label="Model Predictions")

# Launch the interface
iface = gr.Interface(
    fn=predict_image,
    inputs=[image, confidence_slider],
    outputs=label,
    title="AI Generated Classification"
)
iface.launch()