Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,25 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification
|
3 |
from torchvision import transforms
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Load the model and processor
|
6 |
image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
7 |
model = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
8 |
-
|
|
|
9 |
|
10 |
# Define class names
|
11 |
class_names = ['artificial', 'real']
|
12 |
|
13 |
-
def predict_image(img):
|
14 |
# Convert the image to a PIL Image and resize it
|
15 |
img = transforms.ToPILImage()(img)
|
16 |
img = transforms.Resize((256, 256))(img)
|
|
|
17 |
|
18 |
# Get the prediction
|
19 |
prediction = clf(img)
|
@@ -26,9 +32,22 @@ def predict_image(img):
|
|
26 |
if class_name not in result:
|
27 |
result[class_name] = 0.0
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Define the Gradio interface
|
32 |
image = gr.Image(label="Image to Analyze", sources=['upload'])
|
|
|
33 |
label = gr.Label(num_top_classes=2)
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification
|
3 |
from torchvision import transforms
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Ensure using GPU if available
|
7 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
8 |
|
9 |
# Load the model and processor
|
10 |
image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
11 |
model = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
12 |
+
model = model.to(device)
|
13 |
+
clf = pipeline(model=model, task="image-classification", image_processor=image_processor, device=device)
|
14 |
|
15 |
# Define class names
|
16 |
class_names = ['artificial', 'real']
|
17 |
|
18 |
+
def predict_image(img, confidence_threshold):
|
19 |
# Convert the image to a PIL Image and resize it
|
20 |
img = transforms.ToPILImage()(img)
|
21 |
img = transforms.Resize((256, 256))(img)
|
22 |
+
img = transforms.ToTensor()(img).unsqueeze(0).to(device) # Add batch dimension and move to GPU
|
23 |
|
24 |
# Get the prediction
|
25 |
prediction = clf(img)
|
|
|
32 |
if class_name not in result:
|
33 |
result[class_name] = 0.0
|
34 |
|
35 |
+
# Check if either class meets the confidence threshold
|
36 |
+
if result['artificial'] >= confidence_threshold:
|
37 |
+
return f"Label: artificial, Confidence: {result['artificial']:.4f}"
|
38 |
+
elif result['real'] >= confidence_threshold:
|
39 |
+
return f"Label: real, Confidence: {result['real']:.4f}"
|
40 |
+
else:
|
41 |
+
return "Uncertain Classification"
|
42 |
|
43 |
# Define the Gradio interface
|
44 |
image = gr.Image(label="Image to Analyze", sources=['upload'])
|
45 |
+
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
|
46 |
label = gr.Label(num_top_classes=2)
|
47 |
+
|
48 |
+
gr.Interface(
|
49 |
+
fn=predict_image,
|
50 |
+
inputs=[image, confidence_slider],
|
51 |
+
outputs=label,
|
52 |
+
title="AI Generated Classification"
|
53 |
+
).launch()
|