Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification
|
3 |
from torchvision import transforms
|
4 |
import torch
|
|
|
5 |
|
6 |
# Ensure using GPU if available
|
7 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -17,12 +18,11 @@ class_names = ['artificial', 'real']
|
|
17 |
|
18 |
def predict_image(img, confidence_threshold):
|
19 |
# Convert the image to a PIL Image and resize it
|
20 |
-
|
21 |
-
|
22 |
-
img = transforms.ToTensor()(img).unsqueeze(0).to(device) # Add batch dimension and move to GPU
|
23 |
|
24 |
# Get the prediction
|
25 |
-
prediction = clf(
|
26 |
|
27 |
# Process the prediction to match the class names
|
28 |
result = {pred['label']: pred['score'] for pred in prediction}
|
@@ -41,7 +41,7 @@ def predict_image(img, confidence_threshold):
|
|
41 |
return "Uncertain Classification"
|
42 |
|
43 |
# Define the Gradio interface
|
44 |
-
image = gr.Image(label="Image to Analyze", sources=['upload'])
|
45 |
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
|
46 |
label = gr.Label(num_top_classes=2)
|
47 |
|
|
|
2 |
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification
|
3 |
from torchvision import transforms
|
4 |
import torch
|
5 |
+
from PIL import Image
|
6 |
|
7 |
# Ensure using GPU if available
|
8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
18 |
|
19 |
def predict_image(img, confidence_threshold):
|
20 |
# Convert the image to a PIL Image and resize it
|
21 |
+
img_pil = Image.fromarray(img).convert('RGB') # Convert NumPy array to PIL Image
|
22 |
+
img_pil = transforms.Resize((256, 256))(img_pil)
|
|
|
23 |
|
24 |
# Get the prediction
|
25 |
+
prediction = clf(img_pil)
|
26 |
|
27 |
# Process the prediction to match the class names
|
28 |
result = {pred['label']: pred['score'] for pred in prediction}
|
|
|
41 |
return "Uncertain Classification"
|
42 |
|
43 |
# Define the Gradio interface
|
44 |
+
image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil') # Ensure the image type is PIL
|
45 |
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
|
46 |
label = gr.Label(num_top_classes=2)
|
47 |
|