LPX
✨ feat(predict): add Error Level Analysis to image prediction
c08bf6c
raw
history blame
2.08 kB
import numpy as np
import io
from PIL import Image, ImageFilter, ImageChops
from torchvision import transforms
def softmax(vector):
e = np.exp(vector - np.max(vector)) # for numerical stability
return e / e.sum()
def augment_image(img_pil, methods, rotate_degrees=0, noise_level=0, sharpen_strength=1):
for method in methods:
if method == "rotate":
img_pil = img_pil.rotate(rotate_degrees)
elif method == "add_noise":
noise = np.random.normal(0, noise_level, img_pil.size[::-1] + (3,)).astype(np.uint8)
img_pil = Image.fromarray(np.clip(np.array(img_pil) + noise, 0, 255).astype(np.uint8))
elif method == "sharpen":
img_pil = img_pil.filter(ImageFilter.UnsharpMask(radius=2, percent=sharpen_strength, threshold=3))
return img_pil, img_pil
def convert_pil_to_bytes(image, format='JPEG'):
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format=format)
img_byte_arr = img_byte_arr.getvalue()
return img_byte_arr
def ELA(img_pil, scale=77, alpha=0.66):
# Error Level Analysis for basic image forensics
original = img_pil.copy() # open up the input image
temp_path = 'temp.jpg' # temporary image name to save the ELA to
original.save(temp_path, quality=95) # re-save the image with a quality of 95%
temporary = Image.open(temp_path) # open up the re-saved image
diff = ImageChops.difference(original, temporary) # load in the images to look at pixel by pixel differences
d = diff.load() # load the image into a variable
WIDTH, HEIGHT = diff.size # set the size into a tuple
for x in range(WIDTH): # row by row
for y in range(HEIGHT): # column by column
d[x, y] = tuple(k * scale for k in d[x, y]) # set the pixels to their x,y & color based on error
new_img = ImageChops.blend(temporary, diff, alpha) # blend the original w/ the ELA @ a set alpha/transparency
return new_img