LPX
✨ feat(image processing): add MinMax pre-processing to image pipeline
237292f
import numpy as np
import cv2 as cv
from PIL import Image
def norm_mat(mat):
return cv.normalize(mat, None, 0, 255, cv.NORM_MINMAX).astype(np.uint8)
def equalize_img(img):
ycrcb = cv.cvtColor(img, cv.COLOR_BGR2YCrCb)
ycrcb[:, :, 0] = cv.equalizeHist(ycrcb[:, :, 0])
return cv.cvtColor(ycrcb, cv.COLOR_YCrCb2BGR)
def create_lut(intensity, gamma):
lut = np.zeros((256, 1, 3), dtype=np.uint8)
for i in range(256):
lut[i, 0, 0] = min(255, max(0, i + intensity))
lut[i, 0, 1] = min(255, max(0, i + intensity))
lut[i, 0, 2] = min(255, max(0, i + intensity))
return lut
def gradient_processing(image, intensity=90, blue_mode="Abs", invert=False, equalize=False):
image = np.array(image)
dx, dy = cv.spatialGradient(cv.cvtColor(image, cv.COLOR_BGR2GRAY))
intensity = int(intensity / 100 * 127)
if invert:
dx = (-dx).astype(np.float32)
dy = (-dy).astype(np.float32)
else:
dx = (+dx).astype(np.float32)
dy = (+dy).astype(np.float32)
dx_abs = np.abs(dx)
dy_abs = np.abs(dy)
red = ((dx / np.max(dx_abs) * 127) + 127).astype(np.uint8)
green = ((dy / np.max(dy_abs) * 127) + 127).astype(np.uint8)
if blue_mode == "None":
blue = np.zeros_like(red)
elif blue_mode == "Flat":
blue = np.full_like(red, 255)
elif blue_mode == "Abs":
blue = norm_mat(dx_abs + dy_abs)
elif blue_mode == "Norm":
blue = norm_mat(np.linalg.norm(cv.merge((red, green)), axis=2))
else:
blue = None
gradient = cv.merge([blue, green, red])
if equalize:
gradient = equalize_img(gradient)
elif intensity > 0:
gradient = cv.LUT(gradient, create_lut(intensity, intensity))
return Image.fromarray(gradient)