Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,12 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
3 |
import gradio as gr
|
4 |
|
5 |
# Check if GPU is available, otherwise use CPU
|
6 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
|
8 |
# Load pre-trained GPT-2 model and tokenizer
|
9 |
model_name = "gpt2-large"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
|
13 |
def generate_text(input_text, max_length=16, num_beams=5, do_sample=False, no_repeat_ngram_size=2):
|
14 |
"""
|
@@ -25,7 +25,7 @@ def generate_text(input_text, max_length=16, num_beams=5, do_sample=False, no_re
|
|
25 |
- generated_text (str): The generated text.
|
26 |
"""
|
27 |
# Encode the input text and move it to the appropriate device
|
28 |
-
input_ids = tokenizer(input_text, return_tensors='pt')['input_ids']
|
29 |
# Generate text using the model
|
30 |
output = model.generate(input_ids, max_length=max_length, num_beams=num_beams,
|
31 |
do_sample=do_sample, no_repeat_ngram_size=no_repeat_ngram_size)
|
@@ -47,7 +47,7 @@ def generate_text_with_nucleus_search(input_text, max_length=128, do_sample=True
|
|
47 |
- generated_text (str): The generated text.
|
48 |
"""
|
49 |
# Encode the input text and move it to the appropriate device
|
50 |
-
input_ids = tokenizer(input_text, return_tensors='pt')['input_ids']
|
51 |
# Generate text using nucleus sampling
|
52 |
output = model.generate(input_ids, max_length=max_length, do_sample=do_sample, top_p=top_p)
|
53 |
# Decode the generated output
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
# Check if GPU is available, otherwise use CPU
|
6 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
|
8 |
# Load pre-trained GPT-2 model and tokenizer
|
9 |
model_name = "gpt2-large"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
|
13 |
def generate_text(input_text, max_length=16, num_beams=5, do_sample=False, no_repeat_ngram_size=2):
|
14 |
"""
|
|
|
25 |
- generated_text (str): The generated text.
|
26 |
"""
|
27 |
# Encode the input text and move it to the appropriate device
|
28 |
+
input_ids = tokenizer(input_text, return_tensors='pt')['input_ids']
|
29 |
# Generate text using the model
|
30 |
output = model.generate(input_ids, max_length=max_length, num_beams=num_beams,
|
31 |
do_sample=do_sample, no_repeat_ngram_size=no_repeat_ngram_size)
|
|
|
47 |
- generated_text (str): The generated text.
|
48 |
"""
|
49 |
# Encode the input text and move it to the appropriate device
|
50 |
+
input_ids = tokenizer(input_text, return_tensors='pt')['input_ids']
|
51 |
# Generate text using nucleus sampling
|
52 |
output = model.generate(input_ids, max_length=max_length, do_sample=do_sample, top_p=top_p)
|
53 |
# Decode the generated output
|