Update app.py
Browse files
app.py
CHANGED
@@ -3,28 +3,29 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
3 |
import gradio as gr
|
4 |
|
5 |
# Check if GPU is available, otherwise use CPU
|
6 |
-
|
7 |
|
8 |
# Load pre-trained GPT-2 model and tokenizer
|
9 |
model_name = "gpt2-large"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
-
|
13 |
|
14 |
def generate_text(input_text, max_length=16, num_beams=5, do_sample=False, no_repeat_ngram_size=2):
|
15 |
"""
|
16 |
Generate text based on the given input text.
|
|
|
17 |
Parameters:
|
18 |
- input_text (str): The input text to start generation from.
|
19 |
- max_length (int): Maximum length of the generated text.
|
20 |
- num_beams (int): Number of beams for beam search.
|
21 |
- do_sample (bool): Whether to use sampling or not.
|
22 |
- no_repeat_ngram_size (int): Size of the n-gram to avoid repetition.
|
|
|
23 |
Returns:
|
24 |
- generated_text (str): The generated text.
|
25 |
"""
|
26 |
# Encode the input text and move it to the appropriate device
|
27 |
-
input_ids = tokenizer(input_text, return_tensors='pt')['input_ids']
|
28 |
# Generate text using the model
|
29 |
output = model.generate(input_ids, max_length=max_length, num_beams=num_beams,
|
30 |
do_sample=do_sample, no_repeat_ngram_size=no_repeat_ngram_size)
|
@@ -32,43 +33,38 @@ def generate_text(input_text, max_length=16, num_beams=5, do_sample=False, no_re
|
|
32 |
generated_text = tokenizer.decode(output[0])
|
33 |
return generated_text
|
34 |
|
35 |
-
|
36 |
-
def generate_text_with_nucleus_search(input_text, max_length=16, do_sample=True, top_p=0.9):
|
37 |
"""
|
38 |
Generate text with nucleus sampling based on the given input text.
|
|
|
39 |
Parameters:
|
40 |
- input_text (str): The input text to start generation from.
|
41 |
- max_length (int): Maximum length of the generated text.
|
42 |
- do_sample (bool): Whether to use sampling or not.
|
43 |
- top_p (float): Nucleus sampling parameter.
|
|
|
44 |
Returns:
|
45 |
- generated_text (str): The generated text.
|
46 |
"""
|
47 |
# Encode the input text and move it to the appropriate device
|
48 |
-
input_ids = tokenizer(input_text, return_tensors='pt')['input_ids']
|
49 |
# Generate text using nucleus sampling
|
50 |
output = model.generate(input_ids, max_length=max_length, do_sample=do_sample, top_p=top_p)
|
51 |
# Decode the generated output
|
52 |
generated_text = tokenizer.decode(output[0])
|
53 |
return generated_text
|
54 |
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
input_text = gr.Textbox(lines=10, label="Input Text", placeholder="Enter text for text generation...")
|
58 |
-
output_text1 = gr.Textbox(label="Generated Text")
|
59 |
-
output_text2 = gr.Textbox(label="Generated Text with Nucleus Search")
|
60 |
|
61 |
-
|
62 |
-
examples = [
|
63 |
-
["I am happy."],
|
64 |
-
["This is a good day."],
|
65 |
-
["It is raining outside."],
|
66 |
-
None # Example for output_text2
|
67 |
-
]
|
68 |
-
|
69 |
-
gr.Interface(generate_text, input_text, output_text1, output_text2,
|
70 |
title="Text Generation with GPT-2",
|
71 |
description="Generate text using the GPT-2 model.",
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
# Check if GPU is available, otherwise use CPU
|
6 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
|
8 |
# Load pre-trained GPT-2 model and tokenizer
|
9 |
model_name = "gpt2-large"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
|
|
12 |
|
13 |
def generate_text(input_text, max_length=16, num_beams=5, do_sample=False, no_repeat_ngram_size=2):
|
14 |
"""
|
15 |
Generate text based on the given input text.
|
16 |
+
|
17 |
Parameters:
|
18 |
- input_text (str): The input text to start generation from.
|
19 |
- max_length (int): Maximum length of the generated text.
|
20 |
- num_beams (int): Number of beams for beam search.
|
21 |
- do_sample (bool): Whether to use sampling or not.
|
22 |
- no_repeat_ngram_size (int): Size of the n-gram to avoid repetition.
|
23 |
+
|
24 |
Returns:
|
25 |
- generated_text (str): The generated text.
|
26 |
"""
|
27 |
# Encode the input text and move it to the appropriate device
|
28 |
+
input_ids = tokenizer(input_text, return_tensors='pt')['input_ids'].to(device)
|
29 |
# Generate text using the model
|
30 |
output = model.generate(input_ids, max_length=max_length, num_beams=num_beams,
|
31 |
do_sample=do_sample, no_repeat_ngram_size=no_repeat_ngram_size)
|
|
|
33 |
generated_text = tokenizer.decode(output[0])
|
34 |
return generated_text
|
35 |
|
36 |
+
def generate_text_with_nucleus_search(input_text, max_length=128, do_sample=True, top_p=0.9):
|
|
|
37 |
"""
|
38 |
Generate text with nucleus sampling based on the given input text.
|
39 |
+
|
40 |
Parameters:
|
41 |
- input_text (str): The input text to start generation from.
|
42 |
- max_length (int): Maximum length of the generated text.
|
43 |
- do_sample (bool): Whether to use sampling or not.
|
44 |
- top_p (float): Nucleus sampling parameter.
|
45 |
+
|
46 |
Returns:
|
47 |
- generated_text (str): The generated text.
|
48 |
"""
|
49 |
# Encode the input text and move it to the appropriate device
|
50 |
+
input_ids = tokenizer(input_text, return_tensors='pt')['input_ids'].to(device)
|
51 |
# Generate text using nucleus sampling
|
52 |
output = model.generate(input_ids, max_length=max_length, do_sample=do_sample, top_p=top_p)
|
53 |
# Decode the generated output
|
54 |
generated_text = tokenizer.decode(output[0])
|
55 |
return generated_text
|
56 |
|
57 |
+
# Create Gradio interfaces
|
58 |
+
input_text_interface = gr.Textbox(lines=5, label="Input Text", placeholder="Enter text for generation...")
|
59 |
|
60 |
+
output_text_interface = gr.Textbox(label="Generated Text", placeholder="Generated text will appear here...")
|
|
|
|
|
|
|
61 |
|
62 |
+
gr.Interface(generate_text, input_text_interface, output_text_interface,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
title="Text Generation with GPT-2",
|
64 |
description="Generate text using the GPT-2 model.",
|
65 |
+
allow_flagging="never").launch(share=True)
|
66 |
+
|
67 |
+
gr.Interface(generate_text_with_nucleus_search, input_text_interface, output_text_interface,
|
68 |
+
title="Text Generation with Nucleus Sampling",
|
69 |
+
description="Generate text using nucleus sampling with the GPT-2 model.",
|
70 |
+
allow_flagging="never").launch(share=True)
|