Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,225 +2,117 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
-
import fitz # PyMuPDF for PDF processing
|
6 |
-
import docx2txt # For DOCX processing
|
7 |
-
from fpdf import FPDF # For creating PDF outputs
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
13 |
-
|
14 |
-
# Set device
|
15 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
-
model = model.to(device)
|
17 |
-
|
18 |
-
# Language mappings
|
19 |
LANGUAGES = {
|
20 |
-
# Major Global Languages
|
21 |
"English": "en_XX",
|
22 |
-
"Spanish": "es_XX",
|
23 |
-
"French": "fr_XX",
|
24 |
-
"German": "de_DE",
|
25 |
-
"Russian": "ru_RU",
|
26 |
-
"Chinese": "zh_CN",
|
27 |
-
"Japanese": "ja_XX",
|
28 |
-
"Arabic": "ar_AR",
|
29 |
-
|
30 |
-
# Major Indian Languages
|
31 |
"Hindi": "hi_IN",
|
32 |
"Bengali": "bn_IN",
|
33 |
-
"Gujarati": "gu_IN",
|
34 |
-
"Marathi": "mr_IN",
|
35 |
"Tamil": "ta_IN",
|
36 |
"Telugu": "te_IN",
|
37 |
"Malayalam": "ml_IN",
|
38 |
"Urdu": "ur_PK"
|
39 |
}
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
if not text:
|
56 |
-
return "
|
57 |
|
58 |
try:
|
|
|
|
|
59 |
# Get language codes
|
60 |
src_lang = LANGUAGES.get(source_lang)
|
61 |
tgt_lang = LANGUAGES.get(target_lang)
|
62 |
|
63 |
-
|
64 |
-
return "Source or target language not supported."
|
65 |
-
|
66 |
-
# Set tokenizer source language
|
67 |
tokenizer.src_lang = src_lang
|
68 |
|
69 |
-
#
|
70 |
-
inputs = tokenizer(text, return_tensors="pt",
|
71 |
-
|
|
|
72 |
|
73 |
# Generate translation
|
74 |
with torch.no_grad():
|
75 |
generated_tokens = model.generate(
|
76 |
**inputs,
|
77 |
forced_bos_token_id=tokenizer.lang_to_id[tgt_lang],
|
78 |
-
max_length=
|
79 |
-
num_beams=
|
80 |
early_stopping=True
|
81 |
)
|
82 |
|
83 |
-
# Decode
|
84 |
translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
85 |
return translation
|
86 |
|
87 |
except Exception as e:
|
88 |
-
return f"Translation
|
89 |
-
|
90 |
-
# File handling functions
|
91 |
-
def extract_text_from_pdf(file_path: str) -> str:
|
92 |
-
"""Extract text from a PDF file"""
|
93 |
-
text = ""
|
94 |
-
try:
|
95 |
-
doc = fitz.open(file_path)
|
96 |
-
for page in doc:
|
97 |
-
text += page.get_text()
|
98 |
-
return text
|
99 |
-
except Exception as e:
|
100 |
-
return f"Error extracting PDF text: {str(e)}"
|
101 |
-
|
102 |
-
def extract_text_from_docx(file_path: str) -> str:
|
103 |
-
"""Extract text from a DOCX file"""
|
104 |
-
try:
|
105 |
-
return docx2txt.process(file_path)
|
106 |
-
except Exception as e:
|
107 |
-
return f"Error extracting DOCX text: {str(e)}"
|
108 |
-
|
109 |
-
def extract_text_from_txt(file_path: str) -> str:
|
110 |
-
"""Extract text from a TXT file"""
|
111 |
-
try:
|
112 |
-
with open(file_path, 'r', encoding='utf-8') as file:
|
113 |
-
return file.read()
|
114 |
-
except UnicodeDecodeError:
|
115 |
-
try:
|
116 |
-
with open(file_path, 'r', encoding='latin-1') as file:
|
117 |
-
return file.read()
|
118 |
-
except Exception as e:
|
119 |
-
return f"Error extracting TXT text: {str(e)}"
|
120 |
-
except Exception as e:
|
121 |
-
return f"Error extracting TXT text: {str(e)}"
|
122 |
-
|
123 |
-
def save_as_pdf(text: str, output_path: str) -> str:
|
124 |
-
"""Save text as PDF"""
|
125 |
-
pdf = FPDF()
|
126 |
-
pdf.add_page()
|
127 |
-
pdf.set_font("Arial", size=12)
|
128 |
-
|
129 |
-
try:
|
130 |
-
# Try UTF-8 first
|
131 |
-
pdf.multi_cell(0, 10, text)
|
132 |
-
except Exception:
|
133 |
-
try:
|
134 |
-
# Fall back to latin-1 with replacement
|
135 |
-
encoded_text = text.encode('latin-1', 'replace').decode('latin-1')
|
136 |
-
pdf.multi_cell(0, 10, encoded_text)
|
137 |
-
except Exception as e:
|
138 |
-
return f"Error creating PDF: {str(e)}"
|
139 |
-
|
140 |
-
try:
|
141 |
-
pdf.output(output_path)
|
142 |
-
return output_path
|
143 |
-
except Exception as e:
|
144 |
-
return f"Error saving PDF: {str(e)}"
|
145 |
-
|
146 |
-
def process_file(file, source_lang: str, target_lang: str) -> tuple[str | None, str]:
|
147 |
-
"""Process uploaded file and translate its content"""
|
148 |
-
if file is None:
|
149 |
-
return None, "No file uploaded."
|
150 |
-
|
151 |
-
try:
|
152 |
-
# Save uploaded file temporarily
|
153 |
-
temp_file_path = file.name
|
154 |
-
|
155 |
-
# Extract text based on file type
|
156 |
-
if temp_file_path.lower().endswith('.pdf'):
|
157 |
-
text = extract_text_from_pdf(temp_file_path)
|
158 |
-
elif temp_file_path.lower().endswith('.docx'):
|
159 |
-
text = extract_text_from_docx(temp_file_path)
|
160 |
-
elif temp_file_path.lower().endswith('.txt'):
|
161 |
-
text = extract_text_from_txt(temp_file_path)
|
162 |
-
else:
|
163 |
-
return None, "Unsupported file format. Please upload PDF, DOCX, or TXT files."
|
164 |
-
|
165 |
-
# Translate the extracted text
|
166 |
-
translated_text = translate(text, source_lang, target_lang)
|
167 |
-
|
168 |
-
# Save translation as PDF
|
169 |
-
output_pdf_path = os.path.join(os.path.dirname(temp_file_path),
|
170 |
-
f"translated_{os.path.basename(temp_file_path)}.pdf")
|
171 |
-
result = save_as_pdf(translated_text, output_pdf_path)
|
172 |
-
|
173 |
-
if isinstance(result, str) and result.startswith("Error"):
|
174 |
-
return None, result
|
175 |
-
|
176 |
-
return output_pdf_path, translated_text
|
177 |
-
|
178 |
-
except Exception as e:
|
179 |
-
return None, f"Error processing file: {str(e)}"
|
180 |
|
181 |
# Create Gradio interface
|
182 |
-
with gr.Blocks(title="
|
183 |
-
gr.Markdown("#
|
184 |
-
gr.Markdown("Translate text with understanding of idioms and cultural expressions")
|
185 |
|
186 |
-
with gr.
|
187 |
-
with gr.
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
)
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
with gr.Row():
|
209 |
-
output_file = gr.File(label="Translated PDF")
|
210 |
-
output_preview = gr.Textbox(label="Translation Preview", lines=8)
|
211 |
-
|
212 |
-
translate_doc_btn = gr.Button("Translate Document", variant="primary")
|
213 |
-
translate_doc_btn.click(
|
214 |
-
fn=process_file,
|
215 |
-
inputs=[file_input, source_lang_doc, target_lang_doc],
|
216 |
-
outputs=[output_file, output_preview]
|
217 |
-
)
|
218 |
|
219 |
-
|
220 |
-
gr.
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
if __name__ == "__main__":
|
226 |
demo.launch(share=True)
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
|
|
|
5 |
|
6 |
+
# First, let's create a simpler interface without complex schema handling
|
7 |
+
# Define languages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
LANGUAGES = {
|
|
|
9 |
"English": "en_XX",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"Hindi": "hi_IN",
|
11 |
"Bengali": "bn_IN",
|
|
|
|
|
12 |
"Tamil": "ta_IN",
|
13 |
"Telugu": "te_IN",
|
14 |
"Malayalam": "ml_IN",
|
15 |
"Urdu": "ur_PK"
|
16 |
}
|
17 |
|
18 |
+
# Initialize model and tokenizer
|
19 |
+
model_name = "facebook/mbart-large-50-many-to-many-mmt"
|
20 |
+
tokenizer = None
|
21 |
+
model = None
|
22 |
+
|
23 |
+
def load_model():
|
24 |
+
global tokenizer, model
|
25 |
+
if tokenizer is None:
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
+
if model is None:
|
28 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
model = model.to("cuda")
|
31 |
+
|
32 |
+
def translate_text(text, source_lang, target_lang):
|
33 |
+
"""Simple translation function"""
|
34 |
if not text:
|
35 |
+
return "Please enter some text to translate."
|
36 |
|
37 |
try:
|
38 |
+
load_model()
|
39 |
+
|
40 |
# Get language codes
|
41 |
src_lang = LANGUAGES.get(source_lang)
|
42 |
tgt_lang = LANGUAGES.get(target_lang)
|
43 |
|
44 |
+
# Set source language
|
|
|
|
|
|
|
45 |
tokenizer.src_lang = src_lang
|
46 |
|
47 |
+
# Tokenize
|
48 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
49 |
+
if torch.cuda.is_available():
|
50 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
51 |
|
52 |
# Generate translation
|
53 |
with torch.no_grad():
|
54 |
generated_tokens = model.generate(
|
55 |
**inputs,
|
56 |
forced_bos_token_id=tokenizer.lang_to_id[tgt_lang],
|
57 |
+
max_length=512,
|
58 |
+
num_beams=4,
|
59 |
early_stopping=True
|
60 |
)
|
61 |
|
62 |
+
# Decode
|
63 |
translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
64 |
return translation
|
65 |
|
66 |
except Exception as e:
|
67 |
+
return f"Translation Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# Create Gradio interface
|
70 |
+
with gr.Blocks(title="Simple Language Translator") as demo:
|
71 |
+
gr.Markdown("# Simple Language Translator")
|
|
|
72 |
|
73 |
+
with gr.Row():
|
74 |
+
with gr.Column():
|
75 |
+
input_text = gr.Textbox(
|
76 |
+
label="Input Text",
|
77 |
+
placeholder="Enter text to translate...",
|
78 |
+
lines=5
|
79 |
+
)
|
80 |
+
source_lang = gr.Dropdown(
|
81 |
+
choices=list(LANGUAGES.keys()),
|
82 |
+
value="English",
|
83 |
+
label="Source Language"
|
84 |
+
)
|
85 |
+
target_lang = gr.Dropdown(
|
86 |
+
choices=list(LANGUAGES.keys()),
|
87 |
+
value="Hindi",
|
88 |
+
label="Target Language"
|
89 |
+
)
|
90 |
+
translate_btn = gr.Button("Translate")
|
91 |
|
92 |
+
with gr.Column():
|
93 |
+
output_text = gr.Textbox(
|
94 |
+
label="Translation",
|
95 |
+
lines=5
|
96 |
+
)
|
|
|
97 |
|
98 |
+
# Set up translation event
|
99 |
+
translate_btn.click(
|
100 |
+
fn=translate_text,
|
101 |
+
inputs=[input_text, source_lang, target_lang],
|
102 |
+
outputs=output_text
|
103 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
# Add examples
|
106 |
+
gr.Examples(
|
107 |
+
examples=[
|
108 |
+
["Hello, how are you?", "English", "Hindi"],
|
109 |
+
["नमस्ते, कैसे हैं आप?", "Hindi", "English"],
|
110 |
+
],
|
111 |
+
inputs=[input_text, source_lang, target_lang],
|
112 |
+
outputs=output_text,
|
113 |
+
fn=translate_text,
|
114 |
+
cache_examples=True,
|
115 |
+
)
|
116 |
|
117 |
if __name__ == "__main__":
|
118 |
demo.launch(share=True)
|