ESPnet2-TTS / app.py
Ahsen Khaliq
Update app.py
6f53eb2
raw
history blame
4.02 kB
import gradio as gr
import time
import torch
import scipy.io.wavfile
from espnet2.bin.tts_inference import Text2Speech
from espnet2.utils.types import str_or_none
tagen = 'kan-bayashi/ljspeech_vits'
vocoder_tagen = "none"
text2speechen = Text2Speech.from_pretrained(
model_tag=str_or_none(tagen),
vocoder_tag=str_or_none(vocoder_tagen),
device="cpu",
# Only for Tacotron 2 & Transformer
threshold=0.5,
# Only for Tacotron 2
minlenratio=0.0,
maxlenratio=10.0,
use_att_constraint=False,
backward_window=1,
forward_window=3,
# Only for FastSpeech & FastSpeech2 & VITS
speed_control_alpha=1.0,
# Only for VITS
noise_scale=0.333,
noise_scale_dur=0.333,
)
tagjp = 'kan-bayashi/jsut_full_band_vits_prosody'
vocoder_tagjp = 'none'
text2speechjp = Text2Speech.from_pretrained(
model_tag=str_or_none(tagjp),
vocoder_tag=str_or_none(vocoder_tagjp),
device="cpu",
# Only for Tacotron 2 & Transformer
threshold=0.5,
# Only for Tacotron 2
minlenratio=0.0,
maxlenratio=10.0,
use_att_constraint=False,
backward_window=1,
forward_window=3,
# Only for FastSpeech & FastSpeech2 & VITS
speed_control_alpha=1.0,
# Only for VITS
noise_scale=0.333,
noise_scale_dur=0.333,
)
tagch = 'kan-bayashi/csmsc_full_band_vits'
vocoder_tagch = "none"
text2speechch = Text2Speech.from_pretrained(
model_tag=str_or_none(tagch),
vocoder_tag=str_or_none(vocoder_tagch),
device="cpu",
# Only for Tacotron 2 & Transformer
threshold=0.5,
# Only for Tacotron 2
minlenratio=0.0,
maxlenratio=10.0,
use_att_constraint=False,
backward_window=1,
forward_window=3,
# Only for FastSpeech & FastSpeech2 & VITS
speed_control_alpha=1.0,
# Only for VITS
noise_scale=0.333,
noise_scale_dur=0.333,
)
def inference(text,lang):
with torch.no_grad():
if lang == "english":
wav = text2speechen(text)["wav"]
scipy.io.wavfile.write("out.wav",text2speechen.fs , wav.view(-1).cpu().numpy())
if lang == "chinese":
wav = text2speechch(text)["wav"]
scipy.io.wavfile.write("out.wav",text2speechench.fs , wav.view(-1).cpu().numpy())
if lang == "japanese":
wav = text2speechjp(text)["wav"]
scipy.io.wavfile.write("out.wav",text2speechjp.fs , wav.view(-1).cpu().numpy())
return "out.wav"
title = "ESPnet2-TTS"
description = "Gradio demo for ESPnet2-TTS: Extending the Edge of TTS Research. To use it, simply add your audio, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2110.07840' target='_blank'>ESPnet2-TTS: Extending the Edge of TTS Research</a> | <a href='https://github.com/espnet/espnet' target='_blank'>Github Repo</a></p>"
examples=[['This paper describes ESPnet2-TTS, an end-to-end text-to-speech (E2E-TTS) toolkit. ESPnet2-TTS extends our earlier version, ESPnet-TTS, by adding many new features, including: on-the-fly flexible pre-processing, joint training with neural vocoders, and state-of-the-art TTS models with extensions like full-band E2E text-to-waveform modeling, which simplify the training pipeline and further enhance TTS performance. The unified design of our recipes enables users to quickly reproduce state-of-the-art E2E-TTS results',"english"],['水をマレーシアから買わなくてはならないのです。',"japanese"],['对英语和日语语料库的实验评估表明,我们提供的模型合成了与真实情况相当的话语,实现了最先进的 TTS 性能',"chinese"]]
gr.Interface(
inference,
[gr.inputs.Textbox(label="input text",lines=10),gr.inputs.Radio(choices=["english", "chinese", "japanese"], type="value", default="english", label="language")],
gr.outputs.Audio(type="file", label="Output"),
title=title,
description=description,
article=article,
enable_queue=True,
examples=examples
).launch(debug=True)