Spaces:
Running
Running
import gradio as gr | |
import os | |
from lumaai import AsyncLumaAI | |
import asyncio | |
import aiohttp | |
import tempfile | |
async def generate_video(api_key, prompt, loop=False, aspect_ratio="16:9", progress=gr.Progress()): | |
client = AsyncLumaAI(auth_token=api_key) | |
progress(0, desc="Initiating video generation...") | |
generation = await client.generations.create( | |
prompt=prompt, | |
loop=loop, | |
aspect_ratio=aspect_ratio | |
) | |
progress(0.1, desc="Video generation started. Waiting for completion...") | |
# Poll for completion | |
start_time = asyncio.get_event_loop().time() | |
while True: | |
status = await client.generations.get(id=generation.id) | |
if status.state == "completed": | |
break | |
elif status.state == "failed": | |
raise Exception("Video generation failed") | |
# Update progress based on time elapsed (assuming 60 seconds total) | |
elapsed_time = asyncio.get_event_loop().time() - start_time | |
progress_value = min(0.1 + (elapsed_time / 60) * 0.8, 0.9) | |
progress(progress_value, desc="Generating video...") | |
await asyncio.sleep(5) | |
progress(0.9, desc="Downloading generated video...") | |
# Download the video | |
video_url = status.assets.video | |
async with aiohttp.ClientSession() as session: | |
async with session.get(video_url) as resp: | |
if resp.status == 200: | |
file_name = f"luma_ai_generated_{generation.id}.mp4" | |
with open(file_name, 'wb') as fd: | |
while True: | |
chunk = await resp.content.read(1024) | |
if not chunk: | |
break | |
fd.write(chunk) | |
progress(1.0, desc="Video generation complete!") | |
return file_name | |
async def text_to_video(api_key, prompt, loop, aspect_ratio, progress=gr.Progress()): | |
if not api_key: | |
raise gr.Error("Please enter your Luma AI API key.") | |
try: | |
video_path = await generate_video(api_key, prompt, loop, aspect_ratio, progress) | |
return video_path, "" | |
except Exception as e: | |
return None, f"An error occurred: {str(e)}" | |
async def image_to_video(api_key, prompt, image, loop, aspect_ratio, progress=gr.Progress()): | |
if not api_key: | |
raise gr.Error("Please enter your Luma AI API key.") | |
if image is None: | |
raise gr.Error("Please upload an image.") | |
try: | |
client = AsyncLumaAI(auth_token=api_key) | |
progress(0, desc="Uploading image...") | |
# Create a temporary file to store the uploaded image | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
temp_file.write(image) | |
temp_file_path = temp_file.name | |
# Upload the image to Luma AI (you might need to implement this function) | |
image_url = await upload_image_to_luma(client, temp_file_path) | |
progress(0.1, desc="Initiating video generation from image...") | |
generation = await client.generations.create( | |
prompt=prompt, | |
loop=loop, | |
aspect_ratio=aspect_ratio, | |
keyframes={ | |
"frame0": { | |
"type": "image", | |
"url": image_url | |
} | |
} | |
) | |
progress(0.2, desc="Video generation started. Waiting for completion...") | |
# Poll for completion | |
start_time = asyncio.get_event_loop().time() | |
while True: | |
status = await client.generations.get(id=generation.id) | |
if status.state == "completed": | |
break | |
elif status.state == "failed": | |
raise Exception("Video generation failed") | |
# Update progress based on time elapsed (assuming 60 seconds total) | |
elapsed_time = asyncio.get_event_loop().time() - start_time | |
progress_value = min(0.2 + (elapsed_time / 60) * 0.7, 0.9) | |
progress(progress_value, desc="Generating video...") | |
await asyncio.sleep(5) | |
progress(0.9, desc="Downloading generated video...") | |
# Download the video | |
video_url = status.assets.video | |
async with aiohttp.ClientSession() as session: | |
async with session.get(video_url) as resp: | |
if resp.status == 200: | |
file_name = f"luma_ai_generated_{generation.id}.mp4" | |
with open(file_name, 'wb') as fd: | |
while True: | |
chunk = await resp.content.read(1024) | |
if not chunk: | |
break | |
fd.write(chunk) | |
# Clean up the temporary file | |
os.unlink(temp_file_path) | |
progress(1.0, desc="Video generation complete!") | |
return file_name, "" | |
except Exception as e: | |
return None, f"An error occurred: {str(e)}" | |
# You need to implement this function based on Luma AI's API for image uploading | |
async def upload_image_to_luma(client, image_path): | |
# This is a placeholder. You need to implement the actual image upload logic | |
# using the Luma AI API. The function should return the URL of the uploaded image. | |
raise NotImplementedError("Image upload to Luma AI is not implemented yet.") | |
with gr.Blocks() as demo: | |
gr.Markdown("# Luma AI Text-to-Video Demo") | |
api_key = gr.Textbox(label="Luma AI API Key", type="password") | |
with gr.Tab("Text to Video"): | |
prompt = gr.Textbox(label="Prompt") | |
generate_btn = gr.Button("Generate Video") | |
video_output = gr.Video(label="Generated Video") | |
error_output = gr.Textbox(label="Error Messages", visible=True) | |
with gr.Accordion("Advanced Options", open=False): | |
loop = gr.Checkbox(label="Loop", value=False) | |
aspect_ratio = gr.Dropdown(label="Aspect Ratio", choices=["16:9", "1:1", "9:16", "4:3", "3:4"], value="16:9") | |
generate_btn.click( | |
text_to_video, | |
inputs=[api_key, prompt, loop, aspect_ratio], | |
outputs=[video_output, error_output] | |
) | |
with gr.Tab("Image to Video"): | |
img_prompt = gr.Textbox(label="Prompt") | |
img_input = gr.Image(label="Upload Image", type="numpy") | |
img_generate_btn = gr.Button("Generate Video from Image") | |
img_video_output = gr.Video(label="Generated Video") | |
img_error_output = gr.Textbox(label="Error Messages", visible=True) | |
with gr.Accordion("Advanced Options", open=False): | |
img_loop = gr.Checkbox(label="Loop", value=False) | |
img_aspect_ratio = gr.Dropdown(label="Aspect Ratio", choices=["16:9", "1:1", "9:16", "4:3", "3:4"], value="16:9") | |
img_generate_btn.click( | |
image_to_video, | |
inputs=[api_key, img_prompt, img_input, img_loop, img_aspect_ratio], | |
outputs=[img_video_output, img_error_output] | |
) | |
demo.queue().launch(share=True) |