steerable-nafx / app.py
Ahsen Khaliq
Update app.py
a10d61b
raw
history blame
8.16 kB
import os
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/compressor_full.pt")
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/reverb_full.pt")
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/amp_full.pt")
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/delay_full.pt")
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/delay_full.pt")
import sys
import math
import torch
import librosa.display
import auraloss
import torchaudio
import numpy as np
import scipy.signal
from tqdm.notebook import tqdm
from time import sleep
import pyloudnorm as pyln
def measure_rt60(h, fs=1, decay_db=30, rt60_tgt=None):
"""
Analyze the RT60 of an impulse response.
Args:
h (ndarray): The discrete time impulse response as 1d array.
fs (float, optional): Sample rate of the impulse response. (Default: 48000)
decay_db (float, optional): The decay in decibels for which we actually estimate the time. (Default: 60)
rt60_tgt (float, optional): This parameter can be used to indicate a target RT60. (Default: None)
Returns:
est_rt60 (float): Estimated RT60.
"""
h = np.array(h)
fs = float(fs)
# The power of the impulse response in dB
power = h ** 2
energy = np.cumsum(power[::-1])[::-1] # Integration according to Schroeder
try:
# remove the possibly all zero tail
i_nz = np.max(np.where(energy > 0)[0])
energy = energy[:i_nz]
energy_db = 10 * np.log10(energy)
energy_db -= energy_db[0]
# -5 dB headroom
i_5db = np.min(np.where(-5 - energy_db > 0)[0])
e_5db = energy_db[i_5db]
t_5db = i_5db / fs
# after decay
i_decay = np.min(np.where(-5 - decay_db - energy_db > 0)[0])
t_decay = i_decay / fs
# compute the decay time
decay_time = t_decay - t_5db
est_rt60 = (60 / decay_db) * decay_time
except:
est_rt60 = np.array(0.0)
return est_rt60
def causal_crop(x, length: int):
if x.shape[-1] != length:
stop = x.shape[-1] - 1
start = stop - length
x = x[..., start:stop]
return x
class FiLM(torch.nn.Module):
def __init__(
self,
cond_dim, # dim of conditioning input
num_features, # dim of the conv channel
batch_norm=True,
):
super().__init__()
self.num_features = num_features
self.batch_norm = batch_norm
if batch_norm:
self.bn = torch.nn.BatchNorm1d(num_features, affine=False)
self.adaptor = torch.nn.Linear(cond_dim, num_features * 2)
def forward(self, x, cond):
cond = self.adaptor(cond)
g, b = torch.chunk(cond, 2, dim=-1)
g = g.permute(0, 2, 1)
b = b.permute(0, 2, 1)
if self.batch_norm:
x = self.bn(x) # apply BatchNorm without affine
x = (x * g) + b # then apply conditional affine
return x
class TCNBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation, cond_dim=0, activation=True):
super().__init__()
self.conv = torch.nn.Conv1d(
in_channels,
out_channels,
kernel_size,
dilation=dilation,
padding=0, #((kernel_size-1)//2)*dilation,
bias=True)
if cond_dim > 0:
self.film = FiLM(cond_dim, out_channels, batch_norm=False)
if activation:
#self.act = torch.nn.Tanh()
self.act = torch.nn.PReLU()
self.res = torch.nn.Conv1d(in_channels, out_channels, 1, bias=False)
def forward(self, x, c=None):
x_in = x
x = self.conv(x)
if hasattr(self, "film"):
x = self.film(x, c)
if hasattr(self, "act"):
x = self.act(x)
x_res = causal_crop(self.res(x_in), x.shape[-1])
x = x + x_res
return x
class TCN(torch.nn.Module):
def __init__(self, n_inputs=1, n_outputs=1, n_blocks=10, kernel_size=13, n_channels=64, dilation_growth=4, cond_dim=0):
super().__init__()
self.kernel_size = kernel_size
self.n_channels = n_channels
self.dilation_growth = dilation_growth
self.n_blocks = n_blocks
self.stack_size = n_blocks
self.blocks = torch.nn.ModuleList()
for n in range(n_blocks):
if n == 0:
in_ch = n_inputs
out_ch = n_channels
act = True
elif (n+1) == n_blocks:
in_ch = n_channels
out_ch = n_outputs
act = True
else:
in_ch = n_channels
out_ch = n_channels
act = True
dilation = dilation_growth ** n
self.blocks.append(TCNBlock(in_ch, out_ch, kernel_size, dilation, cond_dim=cond_dim, activation=act))
def forward(self, x, c=None):
for block in self.blocks:
x = block(x, c)
return x
def compute_receptive_field(self):
"""Compute the receptive field in samples."""
rf = self.kernel_size
for n in range(1, self.n_blocks):
dilation = self.dilation_growth ** (n % self.stack_size)
rf = rf + ((self.kernel_size - 1) * dilation)
return rf
# setup the pre-trained models
model_comp = torch.load("compressor_full.pt", map_location="cpu").eval()
model_verb = torch.load("reverb_full.pt", map_location="cpu").eval()
model_amp = torch.load("amp_full.pt", map_location="cpu").eval()
model_delay = torch.load("delay_full.pt", map_location="cpu").eval()
model_synth = torch.load("synth2synth_full.pt", map_location="cpu").eval()
def inference(aud, effect_type):
x_p, sample_rate = torchaudio.load(aud.file)
effect_type = effect_type #@param ["Compressor", "Reverb", "Amp", "Analog Delay", "Synth2Synth"]
gain_dB = -24 #@param {type:"slider", min:-24, max:24, step:0.1}
c0 = -1.4 #@param {type:"slider", min:-10, max:10, step:0.1}
c1 = 3 #@param {type:"slider", min:-10, max:10, step:0.1}
mix = 70 #@param {type:"slider", min:0, max:100, step:1}
width = 50 #@param {type:"slider", min:0, max:100, step:1}
max_length = 30 #@param {type:"slider", min:5, max:120, step:1}
stereo = True #@param {type:"boolean"}
tail = True #@param {type:"boolean"}
# select model type
if effect_type == "Compressor":
pt_model = model_comp
elif effect_type == "Reverb":
pt_model = model_verb
elif effect_type == "Amp":
pt_model = model_amp
elif effect_type == "Analog Delay":
pt_model = model_delay
elif effect_type == "Synth2Synth":
pt_model = model_synth
# measure the receptive field
pt_model_rf = pt_model.compute_receptive_field()
# crop input signal if needed
max_samples = int(sample_rate * max_length)
x_p_crop = x_p[:,:max_samples]
chs = x_p_crop.shape[0]
# if mono and stereo requested
if chs == 1 and stereo:
x_p_crop = x_p_crop.repeat(2,1)
chs = 2
# pad the input signal
front_pad = pt_model_rf-1
back_pad = 0 if not tail else front_pad
x_p_pad = torch.nn.functional.pad(x_p_crop, (front_pad, back_pad))
# design highpass filter
sos = scipy.signal.butter(
8,
20.0,
fs=sample_rate,
output="sos",
btype="highpass"
)
# compute linear gain
gain_ln = 10 ** (gain_dB / 20.0)
# process audio with pre-trained model
with torch.no_grad():
y_hat = torch.zeros(x_p_crop.shape[0], x_p_crop.shape[1] + back_pad)
for n in range(chs):
if n == 0:
factor = (width*5e-3)
elif n == 1:
factor = -(width*5e-3)
c = torch.tensor([float(c0+factor), float(c1+factor)]).view(1,1,-1)
y_hat_ch = pt_model(gain_ln * x_p_pad[n,:].view(1,1,-1), c)
y_hat_ch = scipy.signal.sosfilt(sos, y_hat_ch.view(-1).numpy())
y_hat_ch = torch.tensor(y_hat_ch)
y_hat[n,:] = y_hat_ch
# pad the dry signal
x_dry = torch.nn.functional.pad(x_p_crop, (0,back_pad))
# normalize each first
y_hat /= y_hat.abs().max()
x_dry /= x_dry.abs().max()
# mix
mix = mix/100.0
y_hat = (mix * y_hat) + ((1-mix) * x_dry)
# remove transient
y_hat = y_hat[...,8192:]
y_hat /= y_hat.abs().max()
torchaudio.save("output.mp3", y_hat.view(chs,-1), sample_rate, compression=320.0)
return "output.mp3"