|
import gradio as gr
|
|
import torch
|
|
from transformers import ViTForImageClassification, AutoImageProcessor
|
|
from PIL import Image, ImageDraw, ImageFont
|
|
import random
|
|
import os
|
|
|
|
|
|
model_name = "akridge/noaa-esd-coral-bleaching-vit-classifier-v1"
|
|
model = ViTForImageClassification.from_pretrained(model_name)
|
|
processor = AutoImageProcessor.from_pretrained(model_name, use_fast=True)
|
|
|
|
|
|
id2label = {int(k): v.upper() for k, v in model.config.id2label.items()}
|
|
|
|
|
|
LABEL_COLORS = {
|
|
"CORAL": ((0, 0, 255, 80), (0, 0, 200)),
|
|
"CORAL_BL": ((255, 255, 255, 150), (150, 150, 150))
|
|
}
|
|
|
|
def predict_and_overlay(image, rows=2, cols=5, patch_size=224):
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(device).eval()
|
|
|
|
|
|
image = image.convert('RGB')
|
|
width, height = image.size
|
|
scale_factor = max(width, height) / 800
|
|
font_size = max(12, int(scale_factor * 8))
|
|
border_width = max(3, int(scale_factor * 3))
|
|
|
|
|
|
overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
|
|
overlay_draw = ImageDraw.Draw(overlay)
|
|
|
|
|
|
cell_width, cell_height = width / cols, height / rows
|
|
sampled_points = [
|
|
(random.randint(int(col * cell_width), int((col + 1) * cell_width - 1)),
|
|
random.randint(int(row * cell_height), int((row + 1) * cell_height - 1)))
|
|
for row in range(rows) for col in range(cols)
|
|
]
|
|
|
|
predictions = []
|
|
|
|
|
|
try:
|
|
font = ImageFont.truetype("arial.ttf", size=font_size)
|
|
except IOError:
|
|
font = ImageFont.load_default()
|
|
|
|
|
|
for x, y in sampled_points:
|
|
left, upper = max(0, x - patch_size // 2), max(0, y - patch_size // 2)
|
|
right, lower = min(width, left + patch_size), min(height, upper + patch_size)
|
|
|
|
|
|
patch = image.crop((left, upper, right, lower))
|
|
inputs = processor(images=patch, return_tensors="pt").to(device)
|
|
with torch.no_grad():
|
|
pred_id = model(**inputs).logits.argmax(-1).item()
|
|
pred_label = id2label.get(pred_id, "UNKNOWN")
|
|
predictions.append(pred_label)
|
|
|
|
|
|
fill_color, border_color = LABEL_COLORS.get(pred_label, ((200, 200, 200, 100), (100, 100, 100)))
|
|
|
|
|
|
overlay_draw.rectangle([(left, upper), (right, lower)], fill=fill_color, outline=border_color, width=border_width)
|
|
|
|
label_text = pred_label
|
|
bbox = overlay_draw.textbbox((0, 0), label_text, font=font)
|
|
text_width, text_height = bbox[2] - bbox[0], bbox[3] - bbox[1]
|
|
text_bg_coords = [(left, upper - text_height - 6), (left + text_width + 6, upper)]
|
|
|
|
overlay_draw.rectangle(text_bg_coords, fill=(0, 0, 0, 200))
|
|
overlay_draw.text((left + 3, upper - text_height - 4), label_text, fill="white", font=font)
|
|
|
|
|
|
final_image = Image.alpha_composite(image.convert('RGBA'), overlay).convert('RGB')
|
|
|
|
return final_image, predictions
|
|
|
|
|
|
def load_example_image(example_image):
|
|
return Image.open(example_image)
|
|
|
|
|
|
example_images = [os.path.join("example_images", img) for img in os.listdir("coral_images")]
|
|
|
|
|
|
def gradio_interface(image, rows=2, cols=5):
|
|
final_image, predictions = predict_and_overlay(image, rows, cols)
|
|
return final_image, ", ".join(predictions)
|
|
|
|
iface = gr.Interface(
|
|
fn=gradio_interface,
|
|
inputs=[
|
|
gr.inputs.Image(type="pil", label="Upload Coral Image", optional=True),
|
|
gr.inputs.Dropdown(choices=example_images, label="Or Select an Example Image"),
|
|
gr.inputs.Slider(1, 10, value=2, step=1, label="Rows of Sample Points"),
|
|
gr.inputs.Slider(1, 10, value=5, step=1, label="Columns of Sample Points"),
|
|
],
|
|
outputs=[
|
|
gr.outputs.Image(type="pil", label="Image with Predictions"),
|
|
gr.outputs.Textbox(label="Predictions")
|
|
],
|
|
title="NOAA ESD Coral Bleaching ViT Classifier",
|
|
description="Upload an image or select an example to sample points/patches and predict coral bleaching using the ViT classifier model hosted on Hugging Face."
|
|
)
|
|
|
|
iface.launch()
|
|
|