Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
d2a74d8
1
Parent(s):
6430b7c
app.py
CHANGED
@@ -1,22 +1,8 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import numpy as np
|
6 |
-
|
7 |
-
# Device and dtype configuration
|
8 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
10 |
-
|
11 |
-
# Load model and processor with LM
|
12 |
-
processor = Wav2Vec2ProcessorWithLM.from_pretrained("alakxender/wav2vec2-large-mms-1b-dv-syn-md")
|
13 |
-
model = Wav2Vec2ForCTC.from_pretrained(
|
14 |
-
"alakxender/wav2vec2-large-mms-1b-dv-syn-md",
|
15 |
-
torch_dtype=torch_dtype
|
16 |
-
).to(device)
|
17 |
-
|
18 |
-
MAX_LENGTH = 120 # 2 minutes
|
19 |
-
MIN_LENGTH = 1 # 1 second
|
20 |
|
21 |
def transcribe(audio_file):
|
22 |
try:
|
@@ -84,6 +70,61 @@ iface = gr.Interface(
|
|
84 |
description="Upload an audio file to transcribe Dhivehi speech to text using language model enhanced decoding."
|
85 |
)
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
# Launch the interface
|
88 |
if __name__ == "__main__":
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
+
import subprocess
|
4 |
+
import sys
|
5 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def transcribe(audio_file):
|
8 |
try:
|
|
|
70 |
description="Upload an audio file to transcribe Dhivehi speech to text using language model enhanced decoding."
|
71 |
)
|
72 |
|
73 |
+
|
74 |
+
def install_requirements():
|
75 |
+
requirements_path = 'requirements.txt'
|
76 |
+
|
77 |
+
# Check if requirements.txt exists
|
78 |
+
if not os.path.exists(requirements_path):
|
79 |
+
print("Error: requirements.txt not found")
|
80 |
+
return False
|
81 |
+
|
82 |
+
try:
|
83 |
+
print("Installing requirements...")
|
84 |
+
# Using --no-cache-dir to avoid memory issues
|
85 |
+
subprocess.check_call([
|
86 |
+
sys.executable,
|
87 |
+
"-m",
|
88 |
+
"pip",
|
89 |
+
"install",
|
90 |
+
"-r",
|
91 |
+
requirements_path,
|
92 |
+
"--no-cache-dir"
|
93 |
+
])
|
94 |
+
print("Successfully installed all requirements")
|
95 |
+
return True
|
96 |
+
except subprocess.CalledProcessError as e:
|
97 |
+
print(f"Error installing requirements: {e}")
|
98 |
+
return False
|
99 |
+
except Exception as e:
|
100 |
+
print(f"Unexpected error: {e}")
|
101 |
+
return False
|
102 |
+
|
103 |
# Launch the interface
|
104 |
if __name__ == "__main__":
|
105 |
+
success = install_requirements()
|
106 |
+
if success:
|
107 |
+
print("All requirements installed successfully")
|
108 |
+
|
109 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM
|
110 |
+
import torch
|
111 |
+
import torchaudio
|
112 |
+
import numpy as np
|
113 |
+
|
114 |
+
# Device and dtype configuration
|
115 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
116 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
117 |
+
|
118 |
+
# Load model and processor with LM
|
119 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained("alakxender/wav2vec2-large-mms-1b-dv-syn-md")
|
120 |
+
model = Wav2Vec2ForCTC.from_pretrained(
|
121 |
+
"alakxender/wav2vec2-large-mms-1b-dv-syn-md",
|
122 |
+
torch_dtype=torch_dtype
|
123 |
+
).to(device)
|
124 |
+
|
125 |
+
MAX_LENGTH = 120 # 2 minutes
|
126 |
+
MIN_LENGTH = 1 # 1 second
|
127 |
+
|
128 |
+
iface.launch()
|
129 |
+
else:
|
130 |
+
print("Failed to install some requirements")
|